zr in rutile
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 33)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 11 (18) ◽  
pp. 8756
Author(s):  
Changming Wang ◽  
Shicheng Rao ◽  
Kangxing Shi ◽  
Leon Bagas ◽  
Qi Chen ◽  
...  

Rutile is an important ore mineral to meet the increasing demand of critical metal Ti in various sectors. Here we report a rare example of rutile deposits hosted within the Baishugang–Wujianfang amphibolite-facies metamorphic rocks in the East Qinling Orogen, central China. The rutiles are mostly located within or along the margins of biotite and show 94.6 to 99 wt% TiO2. Rutiles occur as chains, thin layers along the foliation, and dense clusters. The grains are coexisted with magnetite. Based on Zr-in-rutile thermometer the estimated crystallisation temperature is at 630 °C at 7.0 kba. Based on Cr/Nb ratio, the source of the rutile is correlated with Ti-bearing silicate minerals such as biotite from aluminous sedimentary protoliths. The rutile deposit formed during lower amphibolite-facies metamorphism, and is distinct from the eclogite- and granulite-related types elsewhere in the orogen. The LA-ICP-MS U–Pb analyses of rutiles from the deposit yield lower intercept 238U/206Pb ages of 386 ± 16 Ma at the Baishugang–Wujianfang district. These ages correspond to a Devonian arc–continent collisional event between the South and North Qinling domains in the East Qinling Orogen.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 968
Author(s):  
Xingying Wen ◽  
Fangfang Zhang ◽  
Yinhong Wang ◽  
Min Sun ◽  
Wei Zhang ◽  
...  

The chemical composition of rutile has been used as an indicator in magmatic and metamorphic-related diagenetic systems, but rarely in porphyry-style ore systems. The Tuwu deposit (557 Mt at 0.58% Cu) is a large porphyry-style Cu mineralization in Eastern Tianshan, Xinjiang, with typical disseminated, stockwork mineralized veins hosted in tonalite and diorite porphyry, and to a lesser extent in volcanic rocks of the Qi’eshan Group. We first present determination of rutile minerals coupled with chlorite identified in mineralized porphyries from Tuwu to reveal their geochemical features, thus providing new insights into the ore-forming processes and metal exploration. Petrographic and BSE observations show that the rutile generally occurs as large crystals (30 to 80 µm), in association with hydrothermal quartz, chlorite, pyrite, and chalcopyrite. The rutile grains display V, Fe, and Sn enrichment and flat LREE-MREE patterns, indicating a hydrothermal origin. Titanium in rutile (TiO2) is suggested to be sourced from the breakdown and re-equilibration of primary magmatic biotite and Ti-magnetite, and substituted by Sn4+, high field strength elements (HFSE; e.g., Zr4+ and Hf4+), and minor Mo4+ under hydrothermal conditions. The extremely low Mo values (average 30 ppm) in rutile may be due to rutile formation postdating that of Mo sulfides (MoS2) formation in hydrothermal fluids. Chlorite analyses imply that the ore-forming fluids of the main stage were weakly oxidized (logfO2 = −28.5 to −22.1) and of intermediate temperatures (308 to 372 °C), consistent with previous fluid inclusion studies. In addition, Zr-in-rutile geothermometer yields overestimated temperatures (>430 °C) as excess Zr is incorporated into rutile, which is likely caused by fast crystal growth or post crystallization modification by F-Cl-bearing fluid. Thus, application of this geothermometer to magmatic-hydrothermal ore systems is questionable. Based on the comparison of rutile characteristics of porphyry Cu with other types of ore deposits and barren rocks, we suggest that porphyry Cu-related rutile typically has larger grain size, is enriched in V (average 3408 ppm, compared to <1500 ppm of barren rocks) and to a lesser extent in W and Sn (average 121 and 196 ppm, respectively), and has elevated Cr + V/Nb + Ta ratios. These distinctive signatures can be used as critical indicators of porphyry-style Cu mineralization and may serve as a valuable tool in mineral exploration.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 661
Author(s):  
Federica Zaccarini ◽  
Giorgio Garuti ◽  
George L. Luvizotto ◽  
Yuri de Melo Portella ◽  
Athokpam K. Singh

Trace element distribution and Zr-in-rutile temperature have been investigated in accessory rutile from stratiform (UG2, Merensky Reef, Jacurici), podiform (Loma Peguera), and metamorphic chromitites in cratonic shields (Cedrolina, Nuasahi). Rutile from chromitite has typical finger-print of Cr-V-Nb-W-Zr, whose relative abundance distinguishes magmatic from metamorphic chromitite. In magmatic deposits, rutile precipitates as an intercumulus phase, or forms by exsolution from chromite, between 870 °C and 540 °C. The Cr-V in rutile reflects the composition of chromite, both Nb and Zr are moderately enriched, and W is depleted, except for in Jacurici, where moderate W excess was a result of crustal contamination of the mafic magma. In metamorphic deposits, rutile forms by removal of Ti-Cr-V from chromite during metamorphism between 650 °C and 400 °C, consistent with greenschist-amphibolite facies, and displays variable Cr-Nb, low V-Zr, and anomalous enrichment in W caused by reaction with felsic fluids emanating from granitoid intrusions. All deposits, except Cedrolina, contain Rutile+PGM composite grains (<10 µm) locked in chromite, possibly representing relics of orthomagmatic assemblages. The high Cr-V content and the distinctive W-Nb-Zr signature that typifies accessory rutile in chromitite provide a new pathfinder to trace the provenance of detrital rutile in placer deposits.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 553
Author(s):  
Jakub Kotowski ◽  
Krzysztof Nejbert ◽  
Danuta Olszewska-Nejbert

The geochemistry of detrital rutile grains, which are extremely resistant to weathering, was used in a provenance study of the transgressive Albian quartz sands in the southern part of extra-Carpathian Poland. Rutile grains were sampled from eight outcrops and four boreholes located on the Miechów, Szydłowiec, and Puławy Segments. The crystallization temperatures of the rutile grains, calculated using a Zr-in-rutile geothermometer, allowed for the division of the study area into three parts: western, central, and eastern. The western group of samples, located in the Miechów Segment, is characterized by a polymodal distribution of rutile crystallization temperatures (700–800 °C; 550–600 °C, and c. 900 °C) with a significant predominance of high-temperature forms, and with a clear prevalence of metapelitic over metamafic rutile. The eastern group of samples, corresponding to the Lublin Area, is monomodal and their crystallization temperatures peak at 550–600 °C. The contents of metapelitic to metamafic rutile in the study area are comparable. The central group of rutile samples with bimodal distribution (550–600 °C and 850–950 °C) most likely represents a mixing zone, with a visible influence from the western and, to a lesser extent, the eastern group. The most probable source area for the western and the central groups seems to be granulite and high-temperature eclogite facies rocks from the Bohemian Massif. The most probable source area for the eastern group of rutiles seems to be amphibolites and low temperature eclogite facies rocks, probably derived from the southern part of the Baltic Shield.


2021 ◽  
Vol 176 (5) ◽  
Author(s):  
Nicola Campomenosi ◽  
Marco Scambelluri ◽  
Ross J. Angel ◽  
Joerg Hermann ◽  
Mattia L. Mazzucchelli ◽  
...  

AbstractThe ultrahigh-pressure (UHP) whiteschists of the Brossasco-Isasca unit (Dora-Maira Massif, Western Alps) provide a natural laboratory in which to compare results from classical pressure (P)–temperature (T) determinations through thermodynamic modelling with the emerging field of elastic thermobarometry. Phase equilibria and chemical composition of three garnet megablasts coupled with Zr-in-rutile thermometry of inclusions constrain garnet growth within a narrow P–T range at 3–3.5 GPa and 675–720 °C. On the other hand, the zircon-in-garnet host-inclusion system combined with Zr-in-rutile thermometry would suggest inclusion entrapment conditions below 1.5 GPa and 650 °C that are inconsistent with the thermodynamic modelling and the occurrence of coesite as inclusion in the garnet rims. The observed distribution of inclusion pressures cannot be explained by either zircon metamictization, or by the presence of fluids in the inclusions. Comparison of the measured inclusion strains with numerical simulations shows that post-entrapment plastic relaxation of garnet from metamorphic peak conditions down to 0.5 GPa and 600–650 °C, on the retrograde path, best explains the measured inclusion pressures and their disagreement with the results of phase equilibria modelling. This study suggests that the zircon-garnet couple is more reliable at relatively low temperatures (< 600 °C), where entrapment conditions are well preserved but chemical equilibration might be sluggish. On the other hand, thermodynamic modelling appears to be better suited for higher temperatures where rock-scale equilibrium can be achieved more easily but the local plasticity of the host-inclusion system might prevent the preservation of the signal of peak metamorphic conditions in the stress state of inclusions. Currently, we cannot define a precise threshold temperature for resetting of inclusion pressures. However, the application of both chemical and elastic thermobarometry allows a more detailed interpretation of metamorphic P–T paths.


2021 ◽  
Author(s):  
Joseph P. Gonzalez ◽  
Suzanne L. Baldwin ◽  
Jay B. Thomas ◽  
William O. Nachlas ◽  
Paul G. Fitzgerald ◽  
...  

&lt;p&gt;The Caledonian orogen formed following Paleozoic subduction of the Iapetus Ocean and preserves evidence of ultrahigh-pressure (UHP) metamorphism and exhumation of crustal rocks from mantle depths. The Appalachian orogen similarly formed in the Paleozoic following subduction of Iapetus Ocean crust, but evidence for (U)HP metamorphism in exhumed Appalachian rocks has been challenging to identify. We present results from a metapelite from high-pressure rocks of the Tillotson Peak Complex in the northern Appalachians, which formed during the middle-Ordovician Taconic orogeny. This sample contained mm-cm scale garnet porphyroblasts that host abundant mineral inclusions. Confocal Raman microspectroscopy of inclusions in the rims of a garnet porphyroblast identified relic coesite, preserved as a bi-mineralic inclusion composed of coesite in &amp;#945;-quartz. Raman depth profiling and 2-dimensional mapping indicate the relic coesite is ~10 &amp;#956;m&lt;sup&gt;3&lt;/sup&gt;, suggesting that mineralogical evidence of UHP metamorphism in the Appalachians may be preserved only as &amp;#956;m-scale inclusions contained in polymetamorphosed rocks. We applied quantitative WDS X-ray maps acquired with electron microprobe, quartz-in-garnet elastic thermobarometry, and Zr-in-rutile trace element thermometry to further constrain the metamorphic history of the coesite-bearing metapelite. Garnet zoning patterns in conjunction with elastic and trace element thermobarometry applied to co-entrapped mineral inclusions suggest that garnet nucleated at 14-15.5 kbar and 420-520 &amp;#176;C, and continuously crystallized to 15-19.5 kbar and 470-560 &amp;#176;C during subduction zone metamorphism. Peak metamorphic conditions based on the stability field of coesite and on Zr-in-rutile thermometry from inclusions in the garnet rims suggest UHP metamorphism at &gt;28 kbar and 530 &amp;#176;C. UHP metamorphism of pelitic sediments within the Taconic paleo-subduction zone invite comparisons with similar UHP rocks in the Caledonian orogeny. Future studies of UHP metamorphism in the Appalachian orogen will focus on constraining: 1) the spatial and temporal scales of UHP metamorphism, 2) the retrograde/exhumation P&amp;#8211;T path of the coesite-bearing metapelite, and 3) the P&amp;#8211;T history of other nearby metamorphic units, such as the Tillotson peak metabasites, to evaluate if these units shared a similar metamorphic history.&lt;/p&gt;


2021 ◽  
Author(s):  
Kathrin Fassmer ◽  
Peter Tropper ◽  
Hannah Pomella ◽  
Thomas Angerer ◽  
Gerald Degenhart ◽  
...  

&lt;p&gt;In collisional orogens continental crust is subducted to (ultra-)high-pressure (HP/UHP) conditions as constrained by petrologic, tectonic and geophysical observations. Despite a wealth of studies on the subduction and exhumation of UHP rocks, the duration of prograde metamorphism during subduction is still not well constrained.&lt;/p&gt;&lt;p&gt;We plan to apply Lu-Hf and Sm-Nd geochronology on metamorphic rock samples to date the duration of garnet growth, which represents a major part of prograde metamorphism from the greenschist-facies onward. Micaschist samples from the Schneeberg and Radenthein Units in the Eoalpine high-pressure belt (Eastern Alps) will be used for dating as they contain cm- to dm-sized garnet blasts, which experienced only one subduction-exhumation cycle. With dating different parts of big garnet grains, we test whether (1) it is possible to resolve the duration of garnet growth within single crystals, and (2) Lu-Hf and Sm-Nd systems date the same events in the PT-path or yield complementary information. Additionally, we will perform U-Pb geochronology on titanite in order to obtain the age of the first stages of exhumation; in addition, dating of rutile inclusions as well as matrix rutiles will be used to test Eoalpine prograde age. We will also apply U-Th-Pb monazite dating (EPMA and LA-ICPMS) to some of the samples. Collectively, these data will allow us to compare the duration of subduction and the timing of initial exhumation in a single sample. We then will constrain the PT-path of the dated samples by pseudosection modeling combined with Zr-in-rutile, quartz-in-garnet, and carbonaceous material geothermo(baro)metry. We already have preliminary results for Zr-in-rutile thermometry of rutile inclusions in garnets and matrix rutiles for samples from both locations. We measured Zr content with an EPMA and used the calibrations of Tomkins et al. (2007) and Kohn (2020). The calibration of Kohn (2020) gives overall slightly lower temperatures, but all obtained temperatures lay in a range of c. 500-600 &amp;#176;C in accordance with previously published data. In addition, EPMA, &amp;#181;-XRF, LA-ICPMS, and &amp;#181;CT will be used to control if garnets preserved major and trace elemental growth zoning and to provide spatial 3D information on inclusion patterns. &amp;#181;CT analyses were already successfully used to obtain the chemical centre of the garnet grains in order to be able to cut them directly through there center. This is important for all in-situ chemical analyses. With dating different parts of single garnet crystals separately with Lu-Hf and Sm-Nd geochronology, we will add tight time constraints to the PT-path and constrain the duration of garnet growth.&lt;/p&gt;&lt;p&gt;With this contribution we formulate the working hypothesis that prograde subduction together with exhumation is a fast process. The basis for testing the idea of fast prograde metamorphism is that many geochronological studies propose a prograde duration of &lt; 10 Ma and studies using geospeedometry sometimes propose an even shorter duration, which is the impetus for this investigation.&lt;/p&gt;&lt;p&gt;References:&lt;/p&gt;&lt;p&gt;Kohn, M.J. (2020). A refined zirconium-in-rutile thermometer. American Mineralogist(105), 963-971.&lt;/p&gt;&lt;p&gt;Tomkins, H.S., Powell, R. &amp; Ellis, D.J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology(25), 703-713.&lt;/p&gt;


2021 ◽  
Author(s):  
Samantha March ◽  
Renée Tamblyn ◽  
Martin Hand ◽  
Bruna Carvelho ◽  
Chris Clark

&lt;p&gt;The Western Gneiss Region (WGR), Norway is an archetypal continental ultrahigh-pressure (U)HP terrane with an extensive metamorphic history, recording the subduction and subsequent exhumation of continental crust to depths exceeding 120 km. The vast bulk of past work within the WGR has focused on mafic eclogites. In this study, data from rare garnet-kyanite metapelites in (UHP) domains of the WGR is presented. U&amp;#8211;Pb geochronology and trace element compositions in zircon, monazite, apatite, rutile and garnet were acquired, and P&amp;#8211;T conditions were calculated by mineral equilibria forward modelling and Zr-in-rutile thermometry. The Ulsteinvik metapelite defines a prograde path that traverses through ~600&amp;#8211;710 &amp;#176;C and ~11&amp;#8211;14 kbar. Minimum peak conditions are ~750 &amp;#176;C and ~2.9 GPa in an inferred garnet-kyanite-coesite-omphacite-muscovite-rutile-quartz-H&lt;sub&gt;2&lt;/sub&gt;O assemblage. Plagioclase-biotite-quartz intergrowths developed after omphacite-phengite-rutile breakdown on the early retrograde path, followed by cordierite-spinel-plagioclase symplectites after garnet-kyanite-biotite, defining a retrograde P&amp;#8211;T point at ~740 &amp;#176;C and ~7 kbar. Late Ordovician-Early Silurian (~470&amp;#8211;440 Ma) zircon and rutile age data in Ulsteinvik pre-dates the major Scandian UHP subduction episode in the WGR, interpreted as recording early Caledonian subduction within the Bl&amp;#229;h&amp;#248; nappe. Monazite and apatite U-Pb geochronology and trace element data suggest exhumation occurred at ~400 Ma. The Fj&amp;#248;rtoft metapelite is a constituent of the Bl&amp;#229;h&amp;#248; nappe. Minimum peak P&amp;#8211;T conditions are ~1.8 GPa and ~750 &amp;#176;C, with poor peak mineral fidelity attributed to extensive retrograde deformation. Negative Eu anomalies in ~423 Ma monazite suggest retrograde conditions were reached [RJT1]&amp;#160;by ~423 Ma. Ulsteinvik and Fj&amp;#248;rtoft may have experienced pre-Scandian subduction together within the Bl&amp;#229;h&amp;#248; nappe, but record dissimilar histories after this. Two potential scenarios are presented: (1) Ulsteinvik resided within the mantle for 20 million-years longer than Fj&amp;#248;rtoft during Scandian subduction, or (2), the samples were exhumed at different times during pre-Scandian subduction of the Bl&amp;#229;h&amp;#248; nappe. The preservation of prograde zoning within Ulsteinvik garnets precludes a long-term residence within the mantle and suggests the latter option. In this scenario, the subducting Bl&amp;#229;h&amp;#248; nappe experienced a degree of slab tear and partial underplating of the upper plate during the early stages of continental underthrusting. Discrete pieces may have later reattached to the lower plate at different times, partially exhumed, and then subducted to mantle-depths during the Scandian.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document