Determining the speed of intracontinental subduction – preliminary results of zoned garnet geochronology in micaschists from the Schneeberg and Radenthein Complexes, Eastern Alps

Author(s):  
Kathrin Fassmer ◽  
Peter Tropper ◽  
Hannah Pomella ◽  
Thomas Angerer ◽  
Gerald Degenhart ◽  
...  

<p>In collisional orogens continental crust is subducted to (ultra-)high-pressure (HP/UHP) conditions as constrained by petrologic, tectonic and geophysical observations. Despite a wealth of studies on the subduction and exhumation of UHP rocks, the duration of prograde metamorphism during subduction is still not well constrained.</p><p>We plan to apply Lu-Hf and Sm-Nd geochronology on metamorphic rock samples to date the duration of garnet growth, which represents a major part of prograde metamorphism from the greenschist-facies onward. Micaschist samples from the Schneeberg and Radenthein Units in the Eoalpine high-pressure belt (Eastern Alps) will be used for dating as they contain cm- to dm-sized garnet blasts, which experienced only one subduction-exhumation cycle. With dating different parts of big garnet grains, we test whether (1) it is possible to resolve the duration of garnet growth within single crystals, and (2) Lu-Hf and Sm-Nd systems date the same events in the PT-path or yield complementary information. Additionally, we will perform U-Pb geochronology on titanite in order to obtain the age of the first stages of exhumation; in addition, dating of rutile inclusions as well as matrix rutiles will be used to test Eoalpine prograde age. We will also apply U-Th-Pb monazite dating (EPMA and LA-ICPMS) to some of the samples. Collectively, these data will allow us to compare the duration of subduction and the timing of initial exhumation in a single sample. We then will constrain the PT-path of the dated samples by pseudosection modeling combined with Zr-in-rutile, quartz-in-garnet, and carbonaceous material geothermo(baro)metry. We already have preliminary results for Zr-in-rutile thermometry of rutile inclusions in garnets and matrix rutiles for samples from both locations. We measured Zr content with an EPMA and used the calibrations of Tomkins et al. (2007) and Kohn (2020). The calibration of Kohn (2020) gives overall slightly lower temperatures, but all obtained temperatures lay in a range of c. 500-600 °C in accordance with previously published data. In addition, EPMA, µ-XRF, LA-ICPMS, and µCT will be used to control if garnets preserved major and trace elemental growth zoning and to provide spatial 3D information on inclusion patterns. µCT analyses were already successfully used to obtain the chemical centre of the garnet grains in order to be able to cut them directly through there center. This is important for all in-situ chemical analyses. With dating different parts of single garnet crystals separately with Lu-Hf and Sm-Nd geochronology, we will add tight time constraints to the PT-path and constrain the duration of garnet growth.</p><p>With this contribution we formulate the working hypothesis that prograde subduction together with exhumation is a fast process. The basis for testing the idea of fast prograde metamorphism is that many geochronological studies propose a prograde duration of < 10 Ma and studies using geospeedometry sometimes propose an even shorter duration, which is the impetus for this investigation.</p><p>References:</p><p>Kohn, M.J. (2020). A refined zirconium-in-rutile thermometer. American Mineralogist(105), 963-971.</p><p>Tomkins, H.S., Powell, R. & Ellis, D.J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology(25), 703-713.</p>

2020 ◽  
Author(s):  
Kathrin Fassmer ◽  
Peter Tropper ◽  
Hannah Pomella ◽  
Thomas Angerer ◽  
Gerald Degenhard ◽  
...  

<p>In collisional orogens continental crust is subducted to (ultra-)high-pressure (HP/UHP) conditions as constrained by petrologic, tectonic and geophysical observations. These (U)HP rocks are exhumed by an extremely fast process (few Ma) as numerous rocks still preserve their high-pressure metamorphic assemblages, which would not be the case if they had time to re-equilibrate at lower pressure conditions. Despite a wealth of studies on the subduction and exhumation of UHP rocks, the duration of prograde metamorphism during subduction is still not well constrained.</p><p>We plan to do Lu-Hf and Sm-Nd geochronology on metamorphic rock samples to date the duration of garnet growth, which represents a major part of prograde metamorphism from the greenschist-facies on. Micaschist samples from the Schneeberg and Radenthein Units in the Eoalpine high-pressure belt (Eastern Alps) will be used for dating as they contain cm- to dm-sized garnets, which experienced only one subduction-exhumation cycle with P-T conditions reaching 600 °C and up to 1 GPa. With dating different parts of big garnet grains we test (1) if it is possible to resolve the duration of garnet growth within single crystals, (2) if both systems, Lu-Hf and Sm-Nd, are needed for better age-constraints, and (3) whether both systems date the same events in the PT-path or give differing information. Additionally we will perform U-Pb geochronology on titanite in order to obtain the age of the first stages of exhumation and on rutile inclusions as well as matrix rutiles to confirm the Eoalpine prograde age with this additional method. Therefore, we will be able to compare the duration of subduction and the timing of initial exhumation in a single sample. We then will constrain the PT-path of the samples that will be dated by pseudosection modeling combined with Zr-in-rutile geothermometer, quartz-in-garnet geobarometer, and carbonaceous material geothermometer. In addition EPMA, µ-XRF, LA-ICPMS, and µCT will be used to control if garnets preserved major and trace elemental growth zoning and to provide spatial 3D information on inclusion patterns. With dating different parts of single garnet crystals separately with Lu-Hf and Sm-Nd geochronology, we will add tight time constraints to the PT-path and constrain the duration of garnet growth.</p><p>With this contribution we formulate the working hypothesis that prograde subduction together with  exhumation is a fast process. The basis for testing the idea of fast prograde metamorphism is that many geochronological studies propose a prograde duration of < 10 Ma and studies using geospeedometry sometimes propose an even shorter duration, which is the impetus for this investigation.</p>


Lithos ◽  
2019 ◽  
Vol 342-343 ◽  
pp. 420-439 ◽  
Author(s):  
Philip Schantl ◽  
Christoph Hauzenberger ◽  
Friedrich Finger ◽  
Thomas Müller ◽  
Manfred Linner

2020 ◽  
Author(s):  
Irena Miladinova ◽  
Nikolaus Froitzheim ◽  
Thorsten Nagel ◽  
Marian Janák ◽  
Raúl Fonseca ◽  
...  

<p>The nucleation of subduction zone remains a widely discussed topic in the global tectonics. The prevalent view is that subduction starts within an oceanic plate. However, there is strong evidence that subduction can also be initiated within a continent. To test this hypothesis, we combine petrology, isotope geochronology and thermodynamic phase equilibrium modelling on eclogites from the Austroalpine Nappes of the Eastern Alps.</p><p>The high- and ultrahigh-pressure rocks occur in a ~400 km long belt from the Texel Complex in the west to the Sieggraben Unit in the east without remnants of Mesozoic oceanic crust. Garnet growth during pressure increase was dated using Lu-Hf chronometry. The results range between c. 100 and c. 90 Ma, indicating a short period of subduction. Combined with already published data, our estimates of metamorphic conditions indicate a field gradient with increasing pressure and temperature from northwest to southeast, where the rocks experienced ultrahigh-pressure metamorphism. The oldest Cretaceous eclogites (c. 100 Ma) are found in the Saualpe-Koralpe area which comprises widespread gabbros formed during Permian to Triassic rifting. This supports the hypothesis that subduction initiation was intracontinental and localized by a Permian rift. In the Texel Complex two-phased garnets yielded a Variscan-Eoalpine mixed age indicating re-subduction of Variscan eclogite-bearing continental crust during the Eoalpine orogeny. Jurassic blueschist-facies metamorphism at Meliata in the Western Carpathians and Cretaceous eclogite-facies metamorphism in the Austroalpine are separated by a time gap of ~50 Ma and therefore do not represent a transition from oceanic to continental subduction but rather separate events.</p>


2020 ◽  
Author(s):  
Christoph Hauzenberger ◽  
Philip Schantl ◽  
Elena Sizova ◽  
Harald Fritz ◽  
Fritz Finger ◽  
...  

<p><span><span>The granulite occurrences from the Moldanubian zone were extensively studied in the last three decades and their metamorphic overprint at high pressures and at UHT conditions are well constrained. However, there are still some discrepancies regarding the prograde PT-path evolution, the genesis of the granulites and the tectonic processes required to produce the proposed PT-paths. Here we present a comprehensive petrological study where we have investigated more than 300 granulite samples from one of the largest occurrences, the Poechlarn-Wieselburg area - Dunkelsteinerwald. C</span><span>onventional geothermobarometry, garnet zoning pattern, thermodynamic modelling and Zr-in-rutile thermometry on rutile grains enclosed in garnets in felsic and mafic granulites allowed to constrain the prograde as well as the retrograde segments of the PT path. Polycrystalline melt inclusions and high-Ti biotite relics as well as a uniform temperature of approximately 800°C obtained from rutile inclusions (Zr-in-rutile thermometry) in garnet cores disagree with a continuous prograde garnet growth but favour a metastable overstepping of the garnet-in reaction and growth by the peritectic biotite breakdown reaction to garnet and melt within a very narrow PT interval. Subsequent heating to T>1000°C initiated a second stage of garnet growth with a very distinct chemical composition. The preservation of the zoning pattern at these metamorphic conditions clearly document a very short lived process. Diffusion models predict a time span of <5 Ma and cooling rates of 50-60°C/my.</span><span> Zircon U-Pb ages usually cluster around 340 Ma representing the metamorphic peak. However, in mafic granulites zircon ages from approximately 410 Ma to 340 Ma are obtained indicating either an older formation age for the precursor rock of the mafic granulites or just documenting the occurrence of xenocrysts. We applied a series of coupled petrological–thermomechanical tectono-magmatic numerical model to reproduce our deduced PTt-path that evolved from exhumation of subducted lower crust followed by intense heating at the crust-mantle boundary.</span></span></p>


2019 ◽  
Vol 31 (4) ◽  
pp. 791-798
Author(s):  
Andreas Ertl ◽  
Dan Topa ◽  
Gerald Giester ◽  
George R. Rossman ◽  
Ekkehart Tillmanns ◽  
...  
Keyword(s):  

Nematology ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Zahra Tanha Maafi ◽  
Sergei Subbotin ◽  
Maurice Moens

Abstract RFLP and sequences of ITS-rDNA of 45 populations of cyst-forming nematodes collected from different parts of Iran were analysed and identified as representatives of 21 species. Eight enzymes generated RFLP for all studied populations. Comparison of RFLP profiles and sequences of the ITS regions with published data confirmed the presence of Heterodera avenae, H. filipjevi, H. glycines, H. hordecalis, H. latipons, H. schachtii and H. trifolii in Iran. RFLP patterns and ITS sequences for H. elachista, H. turcomanica, H. mothi and C. cacti were obtained for the first time in this study. Heterodera humuli, H. goettingiana, H. fici, H. elachista, H. turcomanica and Cactodera cacti are recorded for the first time in Iran. These results correspond with morphological and morphometric identification of the populations. Several populations were not identified at the species level and are attributed to Heterodera sp.; some of these may correspond to new species. Twenty-one new sequences from Iranian cyst-forming nematodes and 36 known sequences were used for the phylogenetic analyses. The cyst-forming nematodes formed several clades corresponding to their morphological features. Heterodera mothi and H. elachista clustered with high support with other Cyperi group species and H. turcomanica formed a moderately to highly supported clade with the Humuli group.


2003 ◽  
Vol 70 (3) ◽  
pp. 297-305 ◽  
Author(s):  
Maurice G Hayes ◽  
Alan L Kelly

Although widely adopted by the chemical and pharmaceutical industries in recent years, little published data is available regarding possible applications of high pressure homogenisation for dairy products. The objective of this work was to compare the effects of conventional (18 MPa, two-stage) and single or two-stage high pressure homogenisation (HPH) at 50–200 MPa on some properties of raw whole bovine milk (∼4% fat). Fat globule size decreased as HPH pressure increased and, under certain conditions of temperature and pressure, HPH yielded significantly smaller fat globules than conventional homogenisation. Fat globule size was also affected by milk inlet temperature. The pH of all homogenised milk samples decreased during 24 h refrigerated storage. Total bacterial counts of milk were decreased significantly (P<0·05) for milk samples HPH-treated at 150 or 200 MPa. Whiteness and rennet coagulation properties of milk were unaffected or enhanced, respectively, as homogenisation pressure was increased. Average casein micelle size decreased slightly when skim milk was homogenised at 200 MPa. Thus, HPH treatment has several, potentially significant, effects on milk properties.


2012 ◽  
Vol 10 (1) ◽  
pp. 9-11
Author(s):  
Dipankar Das Gupta ◽  
Md Enamul Haque ◽  
Md Nahidul Islam ◽  
Shafiqur Rahman ◽  
AKM Mahbub Hasan ◽  
...  

The plant Jatropha curcas grows well in different parts of Bangladesh and used in many medicinal purposes locally. The alkaloid atherospermidine and a steroid stigmasterol were isolated from the ethyl acetate extract of the stem bark of J. curcas by a combination of column and preparative thin-layer chromatography over silica gel. The structures of these compounds were determined by spectroscopic analysis (UV, IR, 1H NMR and 13C NMR) and by comparison with published data. This is the first report of isolation of the alkaloid atherospermidine from this plant. DOI: http://dx.doi.org/10.3329/dujps.v10i1.10009 DUJPS 2011; 10(1): 9-11


1976 ◽  
Vol 57 (11) ◽  
pp. 1346-1355 ◽  
Author(s):  
D. H. Lenschow ◽  
E. M. Agee

The field phases of AMTEX, a GARP subprogram on air-sea interaction implemented by Japan, were conducted over the East China Sea in the environs of Okinawa, Japan, during the last two weeks of February in 1974 and 1975. Investigators from Australia, Canada, and the United States also participated in this experiment. The weather was generally very favorable for this study of air mass transformation processes in 1975 because of an extensive cold air outbreak during most of the experimental period. A basic synoptic data set was obtained from 6 h soundings from an array of aerological stations centered at Okinawa. In addition, satellite, hourly surface and surface marine, oceanographic, boundary layer, radiation, radar, cloud physics, and aircraft data were obtained and have been or will be available in published data reports or on magnetic tape. Preliminary results from 1974 and 1975 reported at the Fourth AMTEX Study Conference and joint United States–Japan Cooperative Science Program Seminar, “Air Mass Transformation Processes over the Kuroshio in Winter,” held in Tokyo, 26–30 September 1975, are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document