Comparison of the effects of slow-release urea vs conventional urea supplementation on some finishing cattle parameters: A meta-analysis

2021 ◽  
pp. 104549
Author(s):  
Rangel Fernandes Pacheco ◽  
Diego Soares Machado ◽  
Alexandra Fabielle Pereira Viana ◽  
Jullia Sehorek Teixeira ◽  
Lucas Milani
Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Saheed A. Salami ◽  
Colm A. Moran ◽  
Helen E. Warren ◽  
Jules Taylor-Pickard

Slow-release urea (SRU) is a coated non-protein nitrogen (NPN) source for ruminant nutrition. This study applied a meta-analytic technique to quantify the effect of a commercial SRU (Optigen®, Alltech Inc., Nicholasville, KY, USA) on the performance of beef cattle. Data were extracted from 17 experiments and analysed using the random-effects model to estimate the effect size of SRU on dry matter intake (DMI), crude protein intake (CPI), live weight gain (LWG) and feed efficiency (FE) of growing and finishing beef cattle. There was no effect of feeding SRU on the overall DMI and CPI of beef cattle. Dietary inclusion of SRU improved the overall LWG (+92 g/d/head) and FE (+12 g LWG/kg DMI/head) of beef cattle. Notably, SRU supplementation in growing cattle exhibited a better improvement on LWG (130 vs. 60 g/d/head) and FE (18 vs. 8 g LWG/kg DMI/head) compared with finishing cattle. Moreover, SRU showed consistent improvements on the LWG and FE of beef cattle under several study factors. Simulation analysis indicated that positive effects of SRU on LWG and FE improved profitability through reduction in feed cost and reduced the emission intensity of beef production. These results indicate that SRU is a sustainable NPN solution in beef cattle production.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246922
Author(s):  
Saheed A. Salami ◽  
Colm A. Moran ◽  
Helen E. Warren ◽  
Jules Taylor-Pickard

Slow-release urea (SRU) is a coated non-protein nitrogen (NPN) source for providing rumen degradable protein in ruminant nutrition. A meta-analysis was conducted to evaluate the effects of replacing vegetable protein sources with SRU (Optigen®, Alltech Inc., USA) on the production performance of dairy cows. Additionally, the impact of SRU supplementation on dairy sustainability was examined by quantifying the carbon footprint (CFP) of feed use for milk production and manure nitrogen (N) excretion of dairy cows. Data on diet composition and performance variables were extracted from 17 experiments with 44 dietary comparisons (control vs. SRU). A linear mixed model and linear regression were applied to statistically analyse the effect of SRU on feed intake and production performance. Feeding SRU decreased (P < 0.05) dry matter intake (DMI, -500 g/d) and N intake (NI, -20 g/d). There was no significant effect (P > 0.05) on milk yield, fat-corrected milk, energy-corrected milk, and milk fat and protein composition. However, SRU supplementation improved (P < 0.05) feed efficiency (+3%) and N use efficiency (NUE, +4%). Regression analyses revealed that increasing SRU inclusion level decreased DMI and NI whereas increasing dietary crude protein (CP) increased both parameters. However, milk yield and feed efficiency increased in response to increasing levels of SRU inclusion and dietary CP. The NUE had a positive relationship with SRU level whereas NUE decreased with increasing dietary CP. The inclusion of SRU in dairy diets reduced the CFP of feed use for milk production (-14.5%; 373.13 vs. 319.15 g CO2 equivalent/kg milk). Moreover, feeding SRU decreased manure N excretion by 2.7% to 3.1% (-12 to -13 g/cow/d) and N excretion intensity by 3.6% to 4.0% (-0.50 to -0.53 g N/kg milk). In conclusion, feeding SRU can contribute to sustainable dairy production through improvement in production efficiency and reduction in environmental impacts.


2021 ◽  
Vol 902 (1) ◽  
pp. 012034
Author(s):  
S Nayohan ◽  
I Susanto ◽  
K G Wiryawan ◽  
A Jayanegara

Abstract Urea is a source of Non-Protein Nitrogen (NPN). The utilization of urea in the ration is useful for increasing digestibility, dry matter intake, and increasing protein content. This study aims to compare the utilization of conventional urea and Slow Release Urea (SRU) to reduce ammonia concentration by in vivo study using meta-analysis. A total of 13 studies were obtained that consisted of 41 data points. The parameters in this study include pH, Dry Matter Intake (DMI), Volatile Fatty Acid (VFA), ammonia concentration, and nitrogen intake. The database compiled was statistically analyzed using a mixed model method. Different studies were considered as random effects, and the level of urea was treated as fixed effects. The model statistics used were the p-values and the Akaike information criterion. The significance of an effect was stated when its p-value was <0.05. The results revealed that level SRU and conventional urea had a significant linear effect on ammonia concentration, DMI, VFA, pH and nitrogen intake. However, the effect of giving SRU was better than conventional urea. It can be concluded that SRU can control ammonia concentration, DMI, VFA, pH and nitrogen intake better than urea.


2013 ◽  
Vol 38 (8) ◽  
pp. 1494-1503 ◽  
Author(s):  
Xiao-Cui ZHANG ◽  
Qi-Gen DAI ◽  
Xing-Xing HU ◽  
De-Jian ZHU ◽  
Xiu-Wen DING ◽  
...  

2019 ◽  
Vol 179 ◽  
pp. 56-63 ◽  
Author(s):  
A. de B. Carvalho ◽  
A.L. da Silva ◽  
A.M. de A. Silva ◽  
A.J. Netto ◽  
T.T.B. de Medeiros ◽  
...  

2019 ◽  
Vol 64 (No. 7) ◽  
pp. 294-301
Author(s):  
S Gonzalez-Munoz ◽  
J Sanchez ◽  
S Lopez-Aguirre ◽  
J Vicente ◽  
J Pinos-Rodriguez

One in vitro assay and one in vivo trial with ruminally cannulated Holstein steers were conducted to evaluate the effects of a dietary substitution of soybean meal by a urea and slow-release urea source of fermentation and degradation of diets for cattle. The experimental diets consisted of the total mixed rations defined as the control with soybean meal (SBM), U (urea), SRU (slow-release urea), and SRU+U+AA (0.42% + 0.42% + 1% amino acids methionine and lysine). The dietary substitution of SBM by U or SRU reduced (P &lt; 0.05) the total gas production (V), microbial mass and degradation at 72 h incubation under the in vitro conditions, as well as the degradation rate (c) and the total volatile fatty acids (VFA) in the rumen of the steers; however, when the dietary substitution of SBM was by U+SRU+AA, those values did not decrease. In the steers, the dietary substitution of SBM by U and SRU reduced the ruminal degradation rate and the total VFA, and increased the ammonia N, but when SBM was substituted by U+SRU+AA in the diets, these changes were not observed. No advantage of SRU over U was found. The dietary substitution of SBM by U, SRU, U+SRU+AA did not modify the molar proportion of the VFA in the rumen nor were there changes in the nutrient digestion or excretion. Both the in vitro assay and the in vivo trial indicated that replacing SBM with U or SRU increases the ruminal ammonia N concentrations and reduces the degradation rate in the rumen, although those undesirable findings were not found when the SBM was replaced by U+SRU+AA. Therefore, it is feasible to replace the SBM with a combination of urea, slow-release urea, lysine and methionine in the diet for the ruminants.


2018 ◽  
Vol 244 ◽  
pp. 18-27 ◽  
Author(s):  
X.T. Yan ◽  
B.Y. Yan ◽  
Q.M. Ren ◽  
J.J. Dou ◽  
W.W. Wang ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 839-847
Author(s):  
Daryoush Alipour ◽  
Atef Mohamed Saleem ◽  
Haley Sanderson ◽  
Tassilo Brand ◽  
Laize V Santos ◽  
...  

Abstract This study evaluated the effect of combinations of feed-grade urea and slow-release urea (SRU) on fermentation and microbial protein synthesis within two artificial rumens (Rusitec) fed a finishing concentrate diet. The experiment was a completely randomized, dose–response design with SRU substituted at levels of 0% (control), 0.5%, 1%, or 1.75% of dry matter (DM) in place of feed-grade urea, with four replicate fermenters per dosage. The diet consisted of 90% concentrate and 10% forage (DM basis). The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Dry matter and organic matter disappearances were determined after 48 h of incubation from day 9 to 12, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured from day 9 to 12. Microbial protein synthesis was determined on days 13–15. Increasing the level of SRU quadratically affected total VFA (Q, P = 0.031) and ammonia (Q, P = 0.034), with a linear increment in acetate (L, P = 0.01) and isovalerate (L, P = 0.05) and reduction in butyrate (L, P = 0.05). Disappearance of neutral detergent fiber (NDF) and acid detergent fiber (ADF) was quadratically affected by levels of SRU, plateauing at 1% SRU. Inclusion of 1% SRU resulted in the highest amount of microbial nitrogen associated with feed particles (Q, P = 0.037). Responses in the efficiency of microbial protein synthesis fluctuated (L, P = 0.002; Q, P = 0.001) and were the highest for 1% SRU. In general, the result of this study showed that 1% SRU in combination with 0.6% urea increased NDF and ADF digestibility and total volatile fatty acid (TVFA) production.


Sign in / Sign up

Export Citation Format

Share Document