The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination

LWT ◽  
2021 ◽  
pp. 111285
Author(s):  
Yanpo Yao ◽  
Suyan Gao ◽  
Xiaoxia Ding ◽  
Peiwu Li ◽  
Qi Zhang
2002 ◽  
Vol 46 (1-2) ◽  
pp. 223-231 ◽  
Author(s):  
C. Helmer-Madhok ◽  
M. Schmid ◽  
E. Filipov ◽  
T. Gaul ◽  
A. Hippen ◽  
...  

For the development of alternative concepts for the cost effective treatment of wastewaters with high ammonium content and low C/N-ratio, autotrophic consortia of micro-organisms with the ability to convert ammonium directly into N2 are of particular interest. Several full-scale industrial biofilm plants eliminating nitrogen without carbon source for years in a stable process, are suspected for some time to harbor active anaerobic ammonium oxidizers in deeper, oxygen-limited biofilm layers. In order to identify the processes of the single-stage nitrogen elimination (deammonification) in biofilm systems and to allocate them to the responsible micro-organisms, a deammonifying moving-bed pilot plant was investigated in detail. 15N-labelled tracer compounds were used as well as 16S rDNA libraries and in situ identification of dominant organisms. The usage of rRNA-targeted oligonucleotide probes (FISH) was particularly emphasized on the ammonium oxidizers of the β-subclass of Proteobacteria and on the members of the order Planctomycetales. The combined application of these methods led to a deeper insight into the population structure and function of a deammonifying biofilm.


2020 ◽  
Vol 8 (1) ◽  
pp. 117-143 ◽  
Author(s):  
Robin S. Waples ◽  
Kerry A. Naish ◽  
Craig R. Primmer

Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: ( a) Large increases in the numbers of genetic markers (from dozens to 104–106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and ( b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Pankaj Bahuguna ◽  
Anoop Kumar Dobriyal

The present paper deals with the population structure and temporal drift pattern study of aquatic mites in Randi gad, which is a third order spring fed tributary of river Alaknanda in Garhwal, Uttarakhand, India. The mites contribute significantly to the structure and function of a stream ecosystem as it is a preferred food of fish and insects. To significantly analyze the drift strength of mites in a stream, a new index, Dobriyal Bahuguna Drifting Index (DBDI) has been developed which is based on the density of mite population in nature and number of drifting individuals in unit time. The maximum mite population in the stream was observed in January (51 units.m-2 ) and minimum in October (35 units.m-2 ) with 7 species. It was found that the mites perform specific monthly and diel drift pattern. Various factors like current velocity, breeding, colonization, habitat disturbance and protection from predators are responsible for it. The DBDI value for different mite species was observed highest in February (0.264) and minimum in November (0.227). It was also observed that maximum drift was preferred during late morning hours (8-12 hrs).


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Sign in / Sign up

Export Citation Format

Share Document