Mass Transport Complexes on a Cenozoic paleo-shelf edge, Gippsland basin, southeastern Australia

2018 ◽  
Vol 98 ◽  
pp. 783-801 ◽  
Author(s):  
P.E. O'Brien ◽  
C.H. Mitchell ◽  
D. Nguyen ◽  
R.P. Langford
1985 ◽  
Vol 25 (1) ◽  
pp. 95
Author(s):  
S.T. Henzell ◽  
H.R. Irrgang ◽  
E.J. Janssen ◽  
R.A.H. Mitchell ◽  
G.O. Morrell ◽  
...  

The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum.The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43° API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP.In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir.The model was validated by history matching an extensive suite of Repeat Formation Test (RFT)* pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate.This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.* Mark of Schlumberger


1975 ◽  
Vol 15 (2) ◽  
pp. 55
Author(s):  
Ian McPhee

THE GIPPSLAND Basin is established as a prolific producer of oil and gas from a number of giant fields and other major discoveries are yet to be developed. Further discoveries can be expected in this petroliferous basin which has good future exploration potential. The Bass Basin has been disappointing as commercial discoveries have eluded the explorers. However source and reservoir rocks are present and the basin has future promise if the key to the nature of accumulations can be found. The Otway and Great Australian Bight Basins cover a vast area and include very thick potential source formations and good reservoir facies. Thick sedimentary sequences in the deep basin have been little explored and no significant shows encountered. The basins have potential but there are exploration difficulties to be overcome before full potential can be understood.


2005 ◽  
Vol 45 (1) ◽  
pp. 581 ◽  
Author(s):  
T. Bernecker ◽  
A.D. Partridge

In the Gippsland Basin, the seaward extent of paralic coal occurrences can be mapped in successive time slices through the Paleocene and Eocene to provide a series of straight to gently arcuate surrogate palaeoshorelines within the petroliferous Latrobe Group. Palaeogeographic reconstructions that incorporate this information provide a unique perspective on the changes affecting a siliciclastic depositional system on a passive continental margin where basin development has been primarily controlled by thermal sag. In contrast, the absence of calcareous marine fossils and lack of extensive, widespread and thick fine-grained sediments on the marine shelf and continental slope, beyond the seaward limits of coal accumulation, have contributed to the false impression that the Latrobe Group accumulated in a largely non-marine basin. Based on the proposed model for palaeoshoreline delineation, seismic data, sequence analysis, petrography and palynology can be integrated to subdivide the main depositional environments into distinct facies associations that can be used to predict the distribution of petroleum systems elements in the basin. The application of such palaeogeographic models to the older section of the Latrobe Group can improve the identification of these petroleum systems elements in as yet unexplored parts of the Gippsland Basin. Given the recent attention paid to the basin as a CO2 storage province, palaeogeographic interpretations may be able to assist with the selection of appropriate injection sites.


2019 ◽  
Vol 93 (3) ◽  
pp. 543-584 ◽  
Author(s):  
Matthew C. Herne ◽  
Jay P. Nair ◽  
Alistair R. Evans ◽  
Alan M. Tait

AbstractThe Flat Rocks locality in the Wonthaggi Formation (Strzelecki Group) of the Gippsland Basin, southeastern Australia, hosts fossils of a late Barremian vertebrate fauna that inhabited the ancient rift between Australia and Antarctica. Known from its dentary,Qantassaurus intrepidusRich and Vickers-Rich, 1999 has been the only dinosaur named from this locality. However, the plethora of vertebrate fossils collected from Flat Rocks suggests that further dinosaurs await discovery. From this locality, we name a new small-bodied ornithopod,Galleonosaurus dorisaen. gen. n. sp. from craniodental remains. Five ornithopodan genera are now named from Victoria.Galleonosaurus dorisaen. gen. n. sp. is known from five maxillae, from which the first description of jaw growth in an Australian dinosaur is provided. The holotype ofGalleonosaurus dorisaen. gen. n. sp. is the most complete dinosaur maxilla known from Victoria. Micro-CT imagery of the holotype reveals the complex internal anatomy of the neurovascular tract and antorbital fossa. We confirm thatQ. intrepidusis uniquely characterized by a deep foreshortened dentary. Two dentaries originally referred toQ. intrepidusare reassigned toQ.?intrepidusand a further maxilla is referred to cf.Atlascopcosaurus loadsiRich and Rich, 1989. A further ornithopod dentary morphotype is identified, more elongate than those ofQ. intrepidusandQ.?intrepidusand with three more tooth positions. This dentary might pertain toGalleonosaurus dorisaen. gen. n. sp. Phylogenetic analysis recovered Cretaceous Victorian and Argentinian nonstyracosternan ornithopods within the exclusively Gondwanan clade Elasmaria. However, the large-bodied taxonMuttaburrasaurus langdoniBartholomai and Molnar, 1981 is hypothesised as a basal iguanodontian with closer affinities to dryomorphans than to rhabdodontids.UUID:http://zoobank.org/4af87bb4-b687-42f3-9622-aa806a6b4116


1972 ◽  
Vol 12 (1) ◽  
pp. 132 ◽  
Author(s):  
J. Barry Hocking

The Gippsland Basin of southeastern Australia is a post-orogenic, continental margin type of basin of Upper Cretaceous-Cainozoic age.Gippsland Basin evolution can be traced back to the establishment of the Strzelecki Basin, or ancestral Gippsland Basin, during the Jurassic. Gippsland Basin sedimentation commenced in the middle to late Cretaceous and is represented as a gross transgressive-regressive cycle consisting of the continental Latrobe Valley Group (Upper Cretaceous to Eocene or Miocene), the marine Seaspray Group (Oligocene to Pliocene or Recent), and finally the continental Sale Group (Pliocene to Recent).The hydrocarbons of the Gippsland Shelf petroleum province were generated within the Latrobe Valley Group and are trapped in porous fluvio-deltaic sandstones of the Latrobe. At Lakes Entrance, however, oil and gas are present in a marginal sandy facies of the Lakes Entrance Formation (Seaspray Group).The buried Strzelecki Basin has played a fundamental role in the development and distribution of the Cainozoic fold belt in the northern Gippsland Basin. The Gippsland Shelf hydrocarbon accumulations fall within this belt and are primarily structural traps. The apparent lack of structural accumulations onshore in Gippsland is largely due to a Plio-Pleistocene episode of cratonic uplift that was accompanied by basinward tilting of structures and meteoric water influx.The non-commercial Lakes Entrance field, located on the stable northern flank of the basin, is a stratigraphic trap and may serve as a guide for future exploration.


1972 ◽  
Vol 12 (2) ◽  
pp. 46
Author(s):  
John L. Elliott

The Gippsland, Bass and Otway Basins in southeastern Australia are filled with sediments ranging in age from earliest Cretaceous to Recent. These basins were formed from the processes and forces which fragmented the Pacific margin of Gondwanaland. Their sedimentary histories and tectonic styles locate and date the movement of those continental masses now detached.An Early Cretaceous rift valley extended from the Otway Basin through the Gippsland Basin and on to Lord Howe Rise, (a part of eastern Australia at that time). A transform fault separated Tasmania and Antarctica resulting in the continuing detachment of Antarctica.During the Late Cretaceous, Australia drifted from Antarctica sufficiently to allow the Southern Indian Ocean to invade the Otway Basin and the build-out of river deltas. The Otway continental crust was further stretched, resulting in normal faulting and block rotation. Crustal tension continued in the Gippsland Basin and opened the Bass Basin. Fluvial sediments were deposited in both basins. The Tasman Basin was opened.During the Early Tertiary, crustal tension continued to shape the Bass and Gippsland Basins, where thick, fluvial sediments were deposited. The first marine indicators in Gippsland are Paleocene in age and, during the Eocene, two large submarine valleys were cut and filled and a regional unconformity was developed. Early Tertiary marine elastics prograded into the Southern Indian Ocean.Mid-Tertiary marine shales, marls and limestones formed the continental margin of the Otway Basin and gently filled the Bass Basin. In the Gippsland Basin the same -aged sediments unconformably truncated and sealed Early Tertiary sandstones and contructed the continental slope into the Tasman Sea, while a right lateral shear formed the producing structures.


2012 ◽  
Vol 546-547 ◽  
pp. 10-27 ◽  
Author(s):  
Mark D. Lindsay ◽  
Laurent Aillères ◽  
Mark W. Jessell ◽  
Eric A. de Kemp ◽  
Peter G. Betts

Sign in / Sign up

Export Citation Format

Share Document