APPROACHES TO PALAEOGEOGRAPHIC RECONSTRUCTIONS OF THE LATROBE GROUP, GIPPSLAND BASIN, SOUTHEASTERN AUSTRALIA

2005 ◽  
Vol 45 (1) ◽  
pp. 581 ◽  
Author(s):  
T. Bernecker ◽  
A.D. Partridge

In the Gippsland Basin, the seaward extent of paralic coal occurrences can be mapped in successive time slices through the Paleocene and Eocene to provide a series of straight to gently arcuate surrogate palaeoshorelines within the petroliferous Latrobe Group. Palaeogeographic reconstructions that incorporate this information provide a unique perspective on the changes affecting a siliciclastic depositional system on a passive continental margin where basin development has been primarily controlled by thermal sag. In contrast, the absence of calcareous marine fossils and lack of extensive, widespread and thick fine-grained sediments on the marine shelf and continental slope, beyond the seaward limits of coal accumulation, have contributed to the false impression that the Latrobe Group accumulated in a largely non-marine basin. Based on the proposed model for palaeoshoreline delineation, seismic data, sequence analysis, petrography and palynology can be integrated to subdivide the main depositional environments into distinct facies associations that can be used to predict the distribution of petroleum systems elements in the basin. The application of such palaeogeographic models to the older section of the Latrobe Group can improve the identification of these petroleum systems elements in as yet unexplored parts of the Gippsland Basin. Given the recent attention paid to the basin as a CO2 storage province, palaeogeographic interpretations may be able to assist with the selection of appropriate injection sites.

Author(s):  
Richmond Ideozu ◽  
Tochukwu Nduaguibe

The controls of depositional environments on reservoir quality have been evaluated in terms of porosity and permeability of the Gabo Field, Niger Delta, Nigeria. Data used in this research include Well logs, Core data and photos, and grain size analysis for Wells 51 and 52 in the study area. Standard methods as applicable in petrophysical and sedimentological analysis has been adopted. Thirteen reservoir units have been identified in wells 51 and 52 which had 5 reservoirs cored each. The lithofacies units of the identified reservoirs across the study area, comprise pebbly sands, coarse -, medium -, fine- and very fine-grained sands, sandy mud, silty sands and heteroliths. The heteroliths – very fine-grained silty muds are highly bioturbated. Ophiomorpha and skolithos are the major trace fossils with sedimentary structures (ripple lamination, wavy lenticular and planar beds, cross bedded sands, coarsening and fining upward). The facies associations interpreted for the study area are Channel and Coastal barrier systems and the environment of deposition as distributary channel, upper and lower shoreface. The sedimentary processes that deposited facies ranged from high energy regimes, reworking by waves to low energy with periodic influx of silts and muds. The average porosity and permeability for reservoirs in Well 51 is 16.7% and 1317 Md, reservoirs in Well 52 is 28.2% and 2330Md whereas porosity range for the study area is 2% - 32% and permeability is 1.2 – 10600 Md. The reservoir quality reservoir of the sand units in Well 51 (7, 9 and 13) and Well 52 (5, 7, 9, 11 and 13) is excellent - good, this is because of the dynamics environments of deposition (upper shoreface and distributary channel) as well as the mechanisms that play out during deposition such as bioturbation, sorting, sedimentary structures formed. Whereas the poor quality across the reservoirs especially the lower shoreface and prodelta facies is as result of lack bioturbation, connectivity, multiplicity of burrows that may have been plugged by clay and intercalation of shale and sand (heteroliths). This research has shown that environments of deposition have direct influence the reservoir quality in terms of porosity and permeability.


2011 ◽  
Vol 51 (2) ◽  
pp. 693
Author(s):  
Peter Tingate ◽  
Monica Campi ◽  
Geoffrey O'Brien ◽  
John Miranda ◽  
Louise Goldie Divko ◽  
...  

Understanding the CO2 storage potential and petroleum prospectivity of the Gippsland Basin are critical to managing the resources of this region. Key controls on determining the prospectivity for CO2 storage and petroleum include understanding the fluid migration history and reservoir characteristics in the basin. Gippsland Basin hydrology, reservoir characteristics and petroleum systems are being studied to better understand how CO2 can be safely stored in the subsurface. Hydrocarbon migration pathways have been delineated using petroleum systems modelling. The latest hydrocarbon charge history data has been acquired to test the containment potential of individual structures along these migration pathways. The charge history results indicate the Golden Beach gas field has had a complex hydrocarbon fill history, and that early charge has migrated through the regional seal. The results also indicate that early oil charge was very common in the basin, including large structures that are now filled with gas (e.g. Barracouta). The results allow the regions with good CO2 containment potential to be delineated for further storage investigations. A new evaluation of the reservoir characteristics of the Latrobe Group—through porosity/permeability analysis and automated mineral analysis (AMA)—has provided insights into CO2 injectivity and capacity. The AMA results constrain the mineralogy and diagenetic history of the reservoirs and seals. In addition, the data highlights the presence of carbonates, glauconite and K-feldspar that are potentially reactive with injected CO2.


2000 ◽  
Vol 137 (6) ◽  
pp. 667-685 ◽  
Author(s):  
PAVLOS AVRAMIDIS ◽  
ABRAHAM ZELILIDIS ◽  
NIKOLAOS KONTOPOULOS

The Klematia–Paramythia basin is an internal part of the middle Ionian zone of the Hellenide orogen in western Greece. It consists of Middle Eocene to Late Miocene turbidites, up to 3300 m thick, which were deposited in a series of submarine fans. Field studies suggest that the configuration and the depositional environments of the basin were affected by two tectonic phases. During the first tectonic phase, in Middle Eocene to Late Oligocene times, a foreland basin was formed west of the Pindos Thrust front. During the second tectonic phase, in the Early Miocene, the Ionian zone (a part of the foreland basin) was subdivided by internal thrusting into three sub-basins (internal, middle and external) and changed to a complex type foreland basin. Comparison of the type and facies associations of the turbidite deposits that accumulated within the basin suggests that these two tectonic phases had a significant effect on sedimentary dispersal patterns. During the first tectonic phase in the Klematia–Paramythia basin (when it was part of the foreland basin), fine-grained turbidites, up to 1050 m thick, accumulated on the distal part of a submarine fan. The lower part (900 m thick) of these deposits consists of thin to thick interbedded sandstone/mudstone beds which are interpreted as lobes and lobe-fringe (outer-fan) deposits. The upper parts (150 m thick) of these deposits are composed of very thin to thin siltstone/mudstone beds, representing a basin plain environment. During the second tectonic phase, sediments up to 2260 m thick were deposited in the Klematia–Paramythia basin. These deposits are interpreted as lobes and lobe-fringe (outer-fan) fine-grained turbidites in the central part of the basin, channel and interchannel deposits (inner-fan) in some areas of the periphery of the basin, and shelf deposits in the northern and southern terminations of the basin.


ISRN Geology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ntokozo Malaza ◽  
Kuiwu Liu ◽  
Baojin Zhao

The late Palaeozoic coal-bearing Madzaringwe Formation of the Karoo Supergroup in the Tshipise-Pafuri Basin in the Limpopo Province, South Africa, records part of the infill of a passive continental margin terrain. Lithofacies analysis was performed with a view to deduce the nature of depositional environments of the Formation. Sedimentological and sequence stratigraphic evidence indicates that this unit represents a complex siliciclastic facies that reflects a fluvial paleodepositional environment. Eleven facies, which were grouped into five facies associations, were recognised. The base of the Madzaringwe Formation (Lower Member) represents a sequence deposited by braided channels. The coal deposits represent flood plain and swamp deposits, which is characterised by shale, thick coal seams, siltstone, and sandstone. The Middle Member is characterised by both clast and matrix supported conglomerates, major tubular and lenticular sandstones, and finely calcareous, micaceous siltstone. The deposition represents a sequence being formed from fluvial and particularly braided channels. The crudely stratified, coarse to pebbly sandstone indicates channel lag deposits within a heavy loaded fluvial system. The fine-grained sandstone represents deposition by shift channel and side bar deposits during lower flow conditions. The Upper Member is characterised by facies associations similar to the Lower Member, representing a new depositional cyclothem.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 273
Author(s):  
Sean Melehan ◽  
Chrysanthos Botziolis ◽  
Angelos G. Maravelis ◽  
Octavian Catuneanu ◽  
Kevin Ruming ◽  
...  

This study integrates sedimentological and stratigraphic insights into the Upper Permian sedimentary rocks of the Wittingham, Tomago and Newcastle Coal Measures in the Northern Sydney Basin, Australia. Facies analysis documented fifteen facies that belong to seven facies associations. These facies associations correspond to different depositional environments and sub-environments including prodelta, delta-front, upper, lower delta-plain and fluvial. The stratigraphic development points to a shallowing upward trend and is reflected with fluvial deposits sitting on top of the deltaic deposits. The fluvio-deltaic contact is represented by an unconformity and displays an upward increase in sediment caliber. The delta front is mainly controlled by wave, storms- and/or river currents, even though the contribution of tides also occurs in the form of sedimentary structures that suggest tidal influence. In contrast, prodelta and delta-plain are significantly modulated by tidal currents. The impact of tides in the delta plain is fading away upward and therefore, the upper delta plain is much less impacted compared to the lower delta plain. The low abundance of wave ripples suggests that the wave action was not very important in the delta plain. Steep topographic gradients and increased sediment input are suggested, based on the limited or absent evidence of tides in the fluvial realm, related to the growing New England Orogen. In sequence stratigraphic terms, the deltaic system accumulated during highstand normal regression, while the deposition of the overlying fluvial system occurred during lowstand normal regression. The two systems are separated by a subaerial unconformity developed during an intervening forced regression. Short periods of transgression are inferred from the presence of higher frequency cycles in the delta-front.


2019 ◽  
Vol 89 (6) ◽  
pp. 576-597 ◽  
Author(s):  
Pauline H. Cornard ◽  
Kevin T. Pickering

Abstract Studies of supercritical-flow deposits (SFDs) and their spatial distribution in ancient deep-water systems should provide an additional tool to improve the understanding of the flow dynamics during deposition and the architecture of sandbodies. Outcrop recognition of SFDs in ancient deep-marine environments remains poorly documented, although their study dates back to the 1970s. This paper focusses on the criteria for recognizing SFDs and their distribution in three selected depositional environments from an ancient mid-lower slope to a proximal-basin floor setting in the middle Eocene Ainsa Basin, Spanish Pyrenees. From field observations, six facies associations interpreted as related to supercritical flow are defined. These facies associations are grouped in two categories. The first group includes facies associations related to erosional coarse-grained supercritical-flow bedforms related to meter and centimeter-scale scours and backfilling structures interpreted as large-scale cyclic steps or small-scale cyclic steps, respectively. Erosional coarse-grained supercritical bedforms are observed mainly in relatively high-gradient slopes and relatively confined settings. The second group of facies associations are related to depositional fine-grained supercritical-flow bedforms associated with upflow-dipping sandstone lenses, upflow-stacked wavy bedforms, upflow-stacked sigmoidal bedforms, and plane beds, interpreted as unstable and stable antidunes and upper-flow-regime plane beds. Depositional fine-grained supercritical-flow bedforms are observed mainly in relatively unconfined settings such as lower-slope, break-of-slope and proximal basin-floor environments. Two main SFD trends were observed in the Ainsa Basin in: (i) an axial-lateral direction, showing a decrease in SFDs from channel axis to channel margin, and (ii) a longitudinal proximal–distal direction, showing an increase in SFDs from the Gerbe System (mid-slope environment), to the Banastón System (proximal basin-floor environment), to the Ainsa System (lower-slope environment). From this study, two parameters are recognized as likely playing an important role on whether a flow is under supercritical or subcritical conditions: (i) confinement of the sandbodies, and (ii) slope gradient.


2018 ◽  
Vol 98 ◽  
pp. 783-801 ◽  
Author(s):  
P.E. O'Brien ◽  
C.H. Mitchell ◽  
D. Nguyen ◽  
R.P. Langford

1970 ◽  
Vol 12 ◽  
pp. 63-74 ◽  
Author(s):  
Prakash Das Ulak

This paper describes on lithostratigraphy as well as evolution of the fluvial styles in late Cenozoic Siwalik Group along the Kankai River section of east Nepal Himalaya. The Siwalik Group lies on the southern flank of the Himalaya, is composed of molasse sediments, which were derived from the rising Himalaya in the north. The group along the Kankai River section is lithologically divided into the Lower, Middle and Upper Siwaliks, in ascending order based on increasing grain size and lithology. The Lower Siwaliks is subdivided into the lower and upper members, whereas the Middle Siwaliks is subdivided into the lower, middle and upper members on the basis of the relative thickness of the sandstone and mudstone beds, frequency of occurrence of these beds, and grain size of sandstone. The Upper Siwaliks is subdivided into the lower and upper members based on the clast size in conglomerate and constituent of the Siwalik sandstone boulders in conglomerate. Based on the lithology, assemblages of sedimentary structure and sediment body architectures, seven facies associations (FA1 to FA7) are recognised. These facies associations are closely related to each lithostratigraphic units of the area. The sediments of the lower and upper members of the Lower Siwaliks are products of the fine-grained meandering and flood flow-dominated meandering systems, respectively. The lower, middle and upper members of the Middle Siwaliks are interpreted as the deposits by sandy meandering, deep sandy braided and shallow braided systems, respectively whereas the lower and upper members of the Upper Siwaliks are the products of gravelly braided to debris flow-dominated braided systems, respectively.   doi: 10.3126/bdg.v12i0.2251 Bulletin of the Department of Geology, Vol. 12, 2009, pp. 63-74


2013 ◽  
Vol 53 (2) ◽  
pp. 460
Author(s):  
Nick Hoffman ◽  
Natt Arian

Carbon dioxide geosequestration requires a detailed understanding of the whole sedimentary section, with particular emphasis on topseals and intraformational seals. Hydrocarbon exploration is more focused on reservoirs but requires a similar basin understanding. This extended abstract reviews the knowledge gained from petroleum exploration in the Gippsland Basin to The CarbonNet Project’s exploration program for CO2 storage. The Ninety Mile Beach on the Gippsland coast is a prominent modern-day sand fairway where longshore drift transports sediments north-eastwards along a barrier-bar system, trapping lake systems behind the coastal strip. This beach is only 10,000 years old (dating to the last glacial rise of sea level) but is built on a platform of earlier beaches that can be traced back almost 90 million years to the initiation of Latrobe Group deposition in the Gippsland Basin. Using a recently compiled and open-file volume of merged 3D seismic surveys, the authors show the evolution of the Latrobe shoreline can be mapped continuously from the Upper Cretaceous to the present day. Sand fairways accumulate as a barrier-bar system at the edge of a steadily subsiding marine embayment, with distinct retrogradational geometries. Behind the barrier system, a series of trapped lakes and lagoons are mapped. In these, coal swamps, extensive shales, and tidal sediments were deposited at different stages of the sea-level curve, while fluvial systems prograded through these lowlands. Detailed 3D seismic extractions show the geometry, orientation and extent of coals, sealing shales, fluvial channels, and bayhead deltas. Detailed understanding of these reservoir and seal systems outlines multi-storey play fairways for hydrocarbon exploration and geosequestration. Use of modern basin resource needs careful coordination of activity and benefits greatly from established data-sharing practices.


Sign in / Sign up

Export Citation Format

Share Document