Impact of genesis and abandonment processes of a fluvial meander on geometry and grain-size distribution of the associated point bar (Venetian Plain, Italy)

2021 ◽  
Vol 127 ◽  
pp. 104951
Author(s):  
Elena Bellizia ◽  
Jacopo Boaga ◽  
Alessandro Fontana ◽  
Andrea D'Alpaos ◽  
Giorgio Cassiani ◽  
...  
2021 ◽  
Author(s):  
Elena Bellizia ◽  
Jacopo Boaga ◽  
Davide Tognin ◽  
Alvise Finotello ◽  
Marta Cosma ◽  
...  

<p>Fluvial and fluvio-tidal meandering channels are widespread in coastal areas, where they shape the present-day landscapes and build up thick sedimentary successions. Deposits accumulated by these channels host the most surficial aquifers, which are deeply exploited by agricultural and industrial activities. Understanding sedimentary facies distribution within these deposits is crucial to predict groundwater flow and also has relevant implications for aquifer management.<br>This study focuses on deposits accumulated by a late Holocene meandering river of the Venetian Plain (Northeast Italy). Combining remote sensing and geophysical data, sedimentary cores, and statistical analyses, we characterize the geometry and sedimentology of two adjacent point-bar bodies, with a specific focus on along-bar sediment grain-size distribution. <br>The study paleochannel is ca. 30 m wide and its planform evolution was reconstructed by analyzing the scroll-bar pattern of the related point bars from satellite images. This channel generated two meander bends, namely B1 and B2, that progressively expanded during their evolution; moreover, bend B1 was affected by a downstream rotation of the bend apex during its final stage of growth. <br>Geophysical investigations (Frequency Domain Electro-Magnetometer) provided information about the electric conductivity of the studied sedimentary bodies by allowing for the visualization of horizontal 2D maps with averaged conductivity values with a vertical resolution of 1 m. Point-bar bodies are characterized by slightly lower conductivity values (7 to 80 mS/m) than channel-fill deposits (49-147 mS/m), whereas overbank deposits exhibit the highest values (115 to 300 mS/m). In the B1 point-bar, conductivity values reflect the scroll-bar pattern and are lower in the upstream and pool zones, whereas, in the B2 point-bar, the conductivity exhibits almost uniform horizontal values at each depth.<br>Sedimentary cores reveal that the two point bars consist of well-sorted sands, ranging from fine to very coarse sand, with no heterolithic deposits. Bar deposits cover a basal lag consisting of very coarse sand with shell fragments. Channel-fill deposits are made of fine to very fine sand with muddy intercalations. Overbank deposits consist of massive mud, which is locally organic-rich.<br>The combination of core analysis and conductivity maps highlights a correlation between conductivity values and sediment textural properties, revealing that finer sediments (i.e., mud in overbank areas) are more conductive than coarser ones (i.e., sand in the point-bar bodies). These observations provide information about the spatial distribution of grain size at different depths, showing the occurrence of different vertical grain-size trends within point-bar deposits. Moreover, statistical analyses reveal that the conductivity values in bar deposits are primarily influenced by the grain-size sorting, and subordinately by grain size and composition. <br>Our findings provide a link between planform evolution of fluvial bends and grain-size distribution within the related bars, with implications to predict subsurface flow propagation within alluvial sedimentary bodies. </p>


1970 ◽  
Vol 2 (2) ◽  
pp. K69-K73 ◽  
Author(s):  
M. Reinbold ◽  
H. Hoffmann

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Author(s):  
Anna Dobkowska ◽  
Boguslawa Adamczyk – Cieślak ◽  
Dariusz Kuc ◽  
Eugeniusz Hadasik ◽  
Tomasz Płociński ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document