Impact of Late Quaternary climatic fluctuations on coastal systems: Evidence from high-resolution geophysical, sedimentological and geochronological data from the Java Island

2021 ◽  
pp. 105399
Author(s):  
Franto Novico ◽  
David Menier ◽  
Manoj Mathew ◽  
Mu Ramkumar ◽  
M. Santosh ◽  
...  
2021 ◽  
Author(s):  
Natacha Fabregas ◽  
Sofia Pechlivanidou ◽  
Robert Gawthorpe ◽  
Mary Ford ◽  
Richard Collier

<p>Relatively few detailed studies exist of rift axis depositional systems and the controls on their sedimentology and stratigraphy. Cores from the IODP Expedition 381 (Corinth Active Rift Development) provide a continuous high resolution stratigraphic record of depositional processes operating within this deep-water rift. During the Late Quaternary, the Gulf of Corinth alternated between marine and isolated/non-marine conditions due to intermittent connection with the open ocean across a sill driven by climate-related sea-level fluctuations. In this study we performed bed scale logging of the sedimentary deposits within the eastern Gulf of Corinth in order to understand key controls on sedimentation during the Late Quaternary. High resolution, mm-scale analysis was performed on the first 300 m of core from Site M0079 that records the last two glacial-interglacial cycles and the Holocene (Marine Isotope Stages 1 to 7). The succession is dominated by fine-grained gravity flows (event beds) and hemipelagic sediments. Event beds result from discrete events that interrupt/overprint ongoing low energy sedimentation. As such, these have been abstracted in order to define three main sedimentary unit types. Unit-scale logging was extended to the rest of the succession and to the other drill sites to build a stratigraphic and depositional model covering the last ca. 700 kyr of deposition. Our results show that during interglacial periods (i.e. marine conditions), the sediment record consists mainly of highly bioturbated mud with rarer occurrences of coarser grained sediment. Sedimentary structures and identifiable event beds have largely been lost due to the high degree of bioturbation. In contrast, during glacial periods (i.e. isolated/semi-isolated lake conditions) the deposits are well bedded with a low bioturbation index and background muds alternate with event beds. Transitional strata, between marine and non-marine units, show finely laminated beds rich in aragonite, often becoming more organic rich toward the top. The deepest parts of the core penetrate slumped units and thicker gravity flow deposits. This study allows us to recognise the response to high frequency climatic fluctuations recorded in the sedimentary succession of this deep-water rift.</p>


2021 ◽  
Vol 50 ◽  
pp. 100680
Author(s):  
Lotem Robins ◽  
Noam Greenbaum ◽  
LuPeng Yu ◽  
Revital Bookman ◽  
Joel Roskin

2018 ◽  
Vol 202 ◽  
pp. 166-181 ◽  
Author(s):  
Katie L. Loakes ◽  
David B. Ryves ◽  
Henry F. Lamb ◽  
Frank Schäbitz ◽  
Michael Dee ◽  
...  

2017 ◽  
Vol 114 (38) ◽  
pp. 10047-10052 ◽  
Author(s):  
Carlos Pérez-Mejías ◽  
Ana Moreno ◽  
Carlos Sancho ◽  
Miguel Bartolomé ◽  
Heather Stoll ◽  
...  

The Late Quaternary glacial–interglacial transitions represent the highest amplitude climate changes over the last million years. Unraveling the sequence of events and feedbacks at Termination III (T-III), including potential abrupt climate reversals similar to those of the last Termination, has been particularly challenging due to the scarcity of well-dated records worldwide. Here, we present speleothem data from southern Europe covering the interval from 262.7 to 217.9 kyBP, including the transition from marine isotope stage (MIS) 8 to MIS 7e. High-resolution δ13C, δ18O, and Mg/Ca profiles reveal major millennial-scale changes in aridity manifested in changing water availability and vegetation productivity. uranium–thorium dates provide a solid chronology for two millennial-scale events (S8.1 and S8.2) which, compared with the last two terminations, has some common features with Heinrich 1 and Heinrich 2 in Termination I (T-I).


2021 ◽  
Author(s):  
Paola Gravina ◽  
Beatrice Moroni ◽  
Riccardo Vivani ◽  
Alessandro Ludovisi ◽  
Roberta Selvaggi ◽  
...  

<p>Shallow and closed lakes are affected by meteorological and climate variations and are especially sensitive to the change in their hydrological balance. In central Italy, there is the fourth-largest lake of the country, the Trasimeno Lake, whose water level has undergone various fluctuations over the centuries with alternation of flood and drought periods because of its shallow depth and the absence of natural outflows [1].</p><p>Sediment archives are used as information records to study chemical, physical, and biological environmental variations and changes in the hydrological budget driven by climatic fluctuations, but this is particularly complicated in shallow lakes due to the multiple perturbative phenomena. A robust study depends on the ability to obtain valid high-resolution geochemical data from lake sediments.</p><p>We conducted high-resolution geochemical analysis on three sediment cores about 1 meter long each, collected in Lake Trasimeno. We sectioned at 1  or 2 cm interval, which provided a detailed characterization of the significant changes in lacustrine processes that occurred in the basin during the Anthropocene (~last 150 years) [2], combining quantitative chemical (ICP-OES) and semi-quantitative (XRD and SEM) investigations. Geochemical variables are used as paleolimnological proxies to reconstruct past lake events that occurred within the water column. In particular, we report the study of the endogenic precipitates characteristic of the Trasimeno sediments, whose precipitation processes have been influenced by water fluctuations and anthropogenic impacts.</p><p>Given the strong presence of water fluctuations, the investigation period was divided into three distinct phases related to the lake's hydrometric state and characterized by sedimentary compounds of different nature. The endogenic carbonate compounds of calcite (commonly present in the Trasimeno sediments) contain a different Mg percentage during the different hydrometric phases. The lake sediments are particularly rich in Mg-calcite due to both water level changes and biological effects. Moreover, co-precipitation of non-crystalline Ca-P compounds (e.g., apatite type) has been detected during a hydrometric phase characterized by high microorganisms activity. Precipitation processes were triggered in Trasimeno by the growth of nutrient discharge into the lake (since the 1970s) and are currently studied for their importance in controlling eutrophication phenomena.</p><p>In conclusion, our findings show that rapid lake responses to water fluctuations and climate variations were transcribed within the sedimentary stratigraphic archives, which underlines their value and high quality in paleoenvironmental and paleohydrological reconstruction.</p><p>References:</p><p>[1] Frondini, Dragoni, Morgantini, Donnini, Cardellini, Caliro, Melillo, and Chiodini (2019). An En-dorheic Lake in a Changing Climate: Geochemical Investigations at Lake Trasimeno (Italy).Water, 11(7):1319.</p><p> [2] Gaino, E., Scoccia, F., Piersanti, S., Rebora, M., Bellucci, L. G., and Ludovisi, A. (2012). Spiculerecords of Ephydatia fluviatilis as a proxy for hydrological and environmental changes inthe shallow Lake Trasimeno (Umbria, Italy). Hydrobiologia, 679(1):139–153.</p>


2009 ◽  
Vol 5 (3) ◽  
pp. 503-521 ◽  
Author(s):  
N. Combourieu Nebout ◽  
O. Peyron ◽  
I. Dormoy ◽  
S. Desprat ◽  
C. Beaudouin ◽  
...  

Abstract. High-temporal resolution pollen record from the Alboran Sea ODP Site 976, pollen-based quantitative climate reconstruction and biomisation show that changes of Mediterranean vegetation have been clearly modulated by short and long term variability during the last 25 000 years. The reliability of the quantitative climate reconstruction from marine pollen spectra has been tested using 22 marine core-top samples from the Mediterranean. The ODP Site 976 pollen record and climatic reconstruction confirm that Mediterranean environments have a rapid response to the climatic fluctuations during the last Termination. The western Mediterranean vegetation response appears nearly synchronous with North Atlantic variability during the last deglaciation as well as during the Holocene. High-resolution analyses of the ODP Site 976 pollen record show a cooling trend during the Bölling/Allerød period. In addition, this period is marked by two warm episodes bracketing a cooling event that represent the Bölling-Older Dryas-Allerød succession. During the Holocene, recurrent declines of the forest cover over the Alboran Sea borderlands indicate climate events that correlate well with several events of increased Mediterranean dryness observed on the continent and with Mediterranean Sea cooling episodes detected by alkenone-based sea surface temperature reconstructions. These events clearly reflect the response of the Mediterranean vegetation to the North Atlantic Holocene cold events.


2002 ◽  
Vol 114 (9) ◽  
pp. 1131-1142 ◽  
Author(s):  
Gregory S. Hancock ◽  
Robert S. Anderson

Abstract Many river systems in western North America retain a fluvial strath-terrace rec ord of discontinuous downcutting into bedrock through the Quaternary. Their importance lies in their use to interpret climatic events in the headwaters and to determine long-term incision rates. Terrace formation has been ascribed to changes in sediment supply and/or water discharge produced by late Quaternary climatic fluctuations. We use a one-dimensional channel- evolution model to explore whether temporal variations in sediment and water discharge can generate terrace sequences. The model includes sediment transport, vertical bedrock erosion limited by alluvial cover, and lateral valley-wall erosion. We set limits on our modeling by using data collected from the terraced Wind River basin. Two types of experiments were performed: constant- period sinusoidal input histories and variable-period inputs scaled by the marine δ18O rec ord. Our simulations indicate that strath-terrace formation requires input variability that produces a changing ratio of vertical to lateral erosion rates. Straths are cut when the channel floor is protected from erosion by sediment and are abandoned—and terraces formed—when incision can resume following sediment-cover thinning. High sediment supply promotes wide valley floors that are abandoned as sediment supply decreases. In contrast, wide valleys are promoted by low effective water discharge and are abandoned as discharge increases. Widening of the valley floors that become terraces occurs over many thousands of years. The transition from valley widening to downcutting and terrace creation occurs in response to subtle input changes affecting local divergence of sediment-transport capacity. Formation of terraces lags by several thousand years the input changes that cause their formation. Our results suggest that use of terrace ages to set limits on the timing of a specific event must be done with the knowledge that the system can take thousands of years to respond to a perturbation. The incision rate calculated in the field from the lowest terrace in these systems will likely be higher than the rate calculated by using older terraces, because the most recent fluvial response in the field is commonly downcutting associated with declining sediment input since the Last Glacial Maximum. This apparent increase in incision rates is observed in many river systems and should not necessarily be interpreted as a response to an increase in rock-uplift rate.


Sign in / Sign up

Export Citation Format

Share Document