Microplastic pollution in the littoral sediments of the northern part of the Oman Sea

2020 ◽  
Vol 155 ◽  
pp. 111166 ◽  
Author(s):  
Kamalodin Kor ◽  
Amir Ghazilou ◽  
Hamid Ershadifar
Keyword(s):  
Oman Sea ◽  
Author(s):  
Elham Shahri ◽  
Mohammad Hossein Sayadi ◽  
Elham Yousefi ◽  
Mozhgan Savabieasfehani

2020 ◽  
Vol 160 ◽  
pp. 111682
Author(s):  
Razieh Hosseini ◽  
Mohammad Hossein Sayadi ◽  
Jaber Aazami ◽  
Mozhgan Savabieasfehani

2016 ◽  
Vol 542 ◽  
pp. 615-626 ◽  
Author(s):  
A. Anda ◽  
B. Simon ◽  
G. Soos ◽  
J.A. Teixeira da Silva ◽  
T. Kucserka

2019 ◽  
Vol 76 (5) ◽  
pp. 831-846 ◽  
Author(s):  
C.J. Watras ◽  
D. Grande ◽  
A.W. Latzka ◽  
L.S. Tate

Atmospheric deposition is the principal source of mercury (Hg) to remote northern landscapes, but its fate depends on multiple factors and internal feedbacks. Here we document long-term trends and cycles of Hg in the air, precipitation, surface water, and fish of northern Wisconsin that span the past three decades, and we investigate relationships to atmospheric processes and other variables, especially the regional water cycle. Consistent with declining emission inventories, there was evidence of declining trends in these time series, but the time series for Hg in some lakes and most fish were dominated by a near-decadal oscillation that tracked the regional oscillation of water levels. Concentrations of important solutes (SO4, dissolved organic carbon) and the acid–base status of lake water also tracked water levels in ways that cannot be attributed to simple dilution or concentration. The explanatory mechanism is analogous to the “reservoir effect” wherein littoral sediments are periodically exposed and reflooded, altering the internal cycles of sulfur, carbon, and mercury. These climatically driven, near-decadal oscillations confound short or sparse time series and complicate relationships among Hg emissions, deposition, and bioaccumulation.


2008 ◽  
Vol 5 (2) ◽  
pp. 135-161 ◽  
Author(s):  
A. A. Bidokhti ◽  
M. Ezam

Abstract. Oceanographic data and a dynamic model are used to consider the structure of Persian Gulf outflow. This outflow influences the physical properties of Oman seawater which appear in the CTD profiles of the Oman Sea. The observations show that thickness of the outflow, which is banked against the Oman coasts due to the earth rotation, is about 200 m with tongues extending east and north that may be due to the internal waves. A simple dynamical model of the outflow based on potential vorticity conservation is used to find the horizontal extension of the outflow from the coast. Typical mass transport estimate by the outflow is about 0.4 Sv, which is larger than those reported by others. This may be due to the fact the model is inviscid but the outflow is influenced by the bottom friction. Variability of the outflow structure may reflect the changing ecosystem of the Persian Gulf. Any change of the outflow source, the Persian Gulf Water (PGW), say salinity increase due to excessive evaporation (climate factor) or desalination (anthropogenic factors) of the PGW may change the outflow structure and the product waters in the Oman Sea. Hence, one can test different scenarios of changing the outflow source, the Persian Gulf Water (PGW), say by salinity increase due to excessive evaporation or desalination (ecosystem factors) of the PGW to estimate changes in the outflow structure and the product waters in the Oman Sea. The results of the model show that these can increase the outflow width and mass transport substantially.


2021 ◽  
Vol 15 (1) ◽  
pp. 69-75
Author(s):  
Amir Behshad ◽  
Mostafa Askarian Zardak ◽  
Yaser Mohammadi

Concrete durability is one of the most important concerns in the field of construction. The environmentally friendly materials that can provide the durability are of great value in the construction of concrete structures. The use of natural pozzolans is one of the cheapest and most efficient methods in this field, which offers a good performance from environmental and economic point of view and satisfies required engineering parameters. In this study, the effect of using natural pozzolan in the manufacture of concrete exposed to sulfate and chloride ion of Oman sea water was investigated. The Taguchi optimization method was used to reduce the number of samples prepared, reduce the cost of experiments and achieve an optimal mix design. The four parameters, namely water to cement ratio, different percentages of natural pozzolan, super-plasticizer and cement grade with different ratios, were considered as problem variables. The Taguchi optimization method proposed 8 mix designs based on the defined levels for the variables. By constructing 96 samples, two parameters of permeability and water absorption from Oman Sea and drinking water were investigated in the samples. By introducing the results of the experiments into the Taguchi method, the final optimal design was presented by this method, and by constructing 12 additional samples and conducting permeability and water absorption experiments, the behavior of this optimal mix design was verified. The appropriate performance of the Taguchi method was demonstrated by obtaining the optimal mix designs from the Taguchi method, constructing this mix design and comparing the results with the regulation limitations. The results showed that it is acceptable to use natural pozzolan under moderate to severe chloride and sulfate ion attacks, but it is not recommended in the extreme environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document