scholarly journals Long-term water quality analysis reveals correlation between bacterial pollution and sea level rise in the northwestern Gulf of Mexico

2021 ◽  
Vol 166 ◽  
pp. 112231
Author(s):  
Nicole C. Powers ◽  
Jason Pinchback ◽  
Lucy Flores ◽  
Yuxia Huang ◽  
Michael S. Wetz ◽  
...  
2020 ◽  
Vol 12 (3) ◽  
pp. 350
Author(s):  
Guoquan Wang ◽  
Xin Zhou ◽  
Kuan Wang ◽  
Xue Ke ◽  
Yongwei Zhang ◽  
...  

We have established a stable regional geodetic reference frame using long-history (13.5 years on average) observations from 55 continuously operated Global Navigation Satellite System (GNSS) stations adjacent to the Gulf of Mexico (GOM). The regional reference frame, designated as GOM20, is aligned in origin and scale with the International GNSS Reference Frame 2014 (IGS14). The primary product from this study is the seven-parameters for transforming the Earth-Centered-Earth-Fixed (ECEF) Cartesian coordinates from IGS14 to GOM20. The frame stability of GOM20 is approximately 0.3 mm/year in the horizontal directions and 0.5 mm/year in the vertical direction. The regional reference frame can be confidently used for the time window from the 1990s to 2030 without causing positional errors larger than the accuracy of 24-h static GNSS measurements. Applications of GOM20 in delineating rapid urban subsidence, coastal subsidence and faulting, and sea-level rise are demonstrated in this article. According to this study, subsidence faster than 2 cm/year is ongoing in several major cities in central Mexico, with the most rapid subsidence reaching to 27 cm/year in Mexico City; a large portion of the Texas and Louisiana coasts are subsiding at 3 to 6.5 mm/year; the average sea-level-rise rate (with respect to GOM20) along the Gulf coast is 2.6 mm/year with a 95% confidence interval of ±1 mm/year during the past five decades. GOM20 provides a consistent platform to integrate ground deformational observations from different remote sensing techniques (e.g., GPS, InSAR, LiDAR, UAV-Photogrammetry) and ground surveys (e.g., tide gauge, leveling surveying) into a unified geodetic reference frame and enables multidisciplinary and cross-disciplinary research.


2016 ◽  
Vol 40 (4) ◽  
pp. 1028-1054 ◽  
Author(s):  
Hongqing Wang ◽  
Qin Chen ◽  
Kelin Hu ◽  
Megan K. La Peyre

2020 ◽  
Vol 95 (sp1) ◽  
pp. 1542
Author(s):  
Seung-Won Suh ◽  
Hyeon-Jeong Kim

2020 ◽  
Vol 191 ◽  
pp. 103212 ◽  
Author(s):  
Bing Yuan ◽  
Jian Sun ◽  
Binliang Lin ◽  
Fanyi Zhang

Author(s):  
Mike R. Scarsbrook ◽  
Chris G. McBride ◽  
Graham B. McBride ◽  
Graham G. Bryers

2021 ◽  
Author(s):  
Bing Yuan ◽  
Jian Sun ◽  
Binliang Lin ◽  
Fanyi Zhang

<p>Globally the riverine sediment supply to estuaries is decreasing and the mean sea level is rising, while the effects of these changes on the long-term estuarine morphodynamics have not been fully investigated. An idealized numerical model was used to explore the long-term morphodynamics of a large estuary subject to these changes. In the model, a funnel-shaped channel with fixed banks, constant riverine water and sediment fluxes, a single grain size and a semi-diurnal tide were used. A range of values of changes in the sediment supply (50-90% reduction) and sea level (1-5~mm/yr increase) were considered. Starting from an equilibrium state for an initial sediment supply, the estuary shifts to a new equilibrium for the considered changes on a timescale of millennia. Half of the bed level change occurs within several hundreds of years. A larger decrease in the sediment supply leads to a stronger bed erosion, while the corresponding adjustment time has minor changes in its range for the considered settings. When combined with sea level rise, the erosion is weakened and the adjustment time is shortened. The equilibrium state under sea level rise is characterized by a bed level keeping pace with the sea level and a significant amount of sediment being trapped in the estuary. Additional numerical experiments that use more realistic geometry and forcing of the Yangtze Estuary show that overall erosion of the estuary is expected for centuries.</p>


Sign in / Sign up

Export Citation Format

Share Document