scholarly journals Grain size and misorientation evolution in linear friction welding of additively manufactured IN718 to forged superalloy AD730™

2020 ◽  
pp. 110766
Author(s):  
Seyedmohammad Tabaie ◽  
Farhad Rézaï-Aria ◽  
Bertrand C.D. Flipo ◽  
Mohammad Jahazi
Author(s):  
Saviour I. Okeke ◽  
Noel M. Harrison ◽  
Mingming Tong

AbstractLinear friction welding (LFW) is an advanced joining technology used for manufacturing and repairing complex assemblies like blade integrated disks (blisks) of aeroengines. This paper presents an integrated multiphysics computational modelling for predicting the thermomechanical-microstructural processes of IN718 alloy (at the component-scale) during LFW. Johnson–Mehl–Avrami-Kolmogorov (JMAK) model was implemented for predicting the dynamic recrystallisation of γ grain, which was coupled with thermomechanical modelling of the LFW process. The computational modelling results of this paper agree well with experimental results from the literature in terms of γ grain size and weld temperature. Twenty different LFW process parameter configurations were systematically analysed in the computations by using the integrated model. It was found that friction pressure was the most influential process parameter, which significantly affected the dynamic recrystallisation of γ grains and weld temperature during LFW. The integrated multiphysics computational modelling was employed to find the appropriate process window of IN718 LFW.


2011 ◽  
Vol 314-316 ◽  
pp. 979-983
Author(s):  
Tie Jun Ma ◽  
Xi Chen ◽  
Wen Ya Li

The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.


2016 ◽  
Vol 879 ◽  
pp. 2072-2077 ◽  
Author(s):  
Priti Wanjara ◽  
Javad Gholipour ◽  
Kosuke Watanabe ◽  
Koji Nezaki ◽  
Y. Tian ◽  
...  

Linear friction welding (LFW), an emerging automated technology, has potential for solid-state joining of dissimilar materials (bi-metals) to enable tailoring of the mechanical performance, whilst limiting the assembly weight for increased fuel efficiency. However, bi-metallic welds are quite difficult to manufacture, especially when the material combinations can lead to the formation of intermetallic (brittle) phases at the interface, such as the case with assembly of Ti base alloys with Ni base superalloys. The intermetallic phase, once formed, lowers the performance of the as-manufactured properties and its growth during elevated temperature service can lead to unreliable performance. In this project, it was demonstrated that linear friction welding can be applied to join Ti-6%Al-4%V (workhorse Ti alloy) to INCONEL® 718 (workhorse Ni-base superalloy) with minimized interaction at the interface. Of particular merit is that no intermediate layer (between the Ti alloy and Ni-base superalloy) was needed for bonding. Characterization of the bi-metallic weld included macro-and microstructural examination of the flash and interface regions and evaluation of the hardness.


2012 ◽  
Vol 60 (2) ◽  
pp. 770-780 ◽  
Author(s):  
E. Dalgaard ◽  
P. Wanjara ◽  
J. Gholipour ◽  
X. Cao ◽  
J.J. Jonas

Sign in / Sign up

Export Citation Format

Share Document