In situ study on the bending strain field of a Zr-based bulk metallic glass with notch

2021 ◽  
pp. 111001
Author(s):  
Lunyong Zhang ◽  
B.T. Jiang ◽  
Y.F. Liang ◽  
Y.J. Huang ◽  
J.F. Sun
2014 ◽  
Vol 105 (20) ◽  
pp. 201906 ◽  
Author(s):  
Si Lan ◽  
Xiaoya Wei ◽  
Jie Zhou ◽  
Zhaoping Lu ◽  
Xuelian Wu ◽  
...  

2019 ◽  
Vol 112 ◽  
pp. 106523 ◽  
Author(s):  
Songshan Jiang ◽  
Shu Guo ◽  
Yongjiang Huang ◽  
Zhiliang Ning ◽  
Peng Xue ◽  
...  

2014 ◽  
Vol 586 ◽  
pp. 155-158 ◽  
Author(s):  
Shengli Zhu ◽  
Guoqiang Xie ◽  
Hao Wang ◽  
Xianjin Yang ◽  
Zhenduo Cui ◽  
...  

2006 ◽  
Vol 54 (11) ◽  
pp. 1961-1966 ◽  
Author(s):  
H.M. Fu ◽  
H. Wang ◽  
H.F. Zhang ◽  
Z.Q. Hu

2019 ◽  
Vol 26 (08) ◽  
pp. 1950037
Author(s):  
BO SHI ◽  
SHIYU LUAN ◽  
PEIPENG JIN

Nanoscale dimples and periodic corrugations are observed on the fracture surface of Zr-based bulk metallic glass composite (BMGC). The nanoscale periodic corrugations display a curved shape, which is different from that observed in previous works. In addition, the crystallization behavior of [Formula: see text][Formula: see text][Formula: see text][Formula: see text] BMG was investigated. The second crystallization event of Zr-Cu-Ni-Al BMG can be controlled by annealing or tuning cooling rate. The in situ Zr-based BMGC was prepared via lowering cooling rate. The Zr-based BMGC displays completely brittleness.


Sign in / Sign up

Export Citation Format

Share Document