Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes

2011 ◽  
Vol 129 (3) ◽  
pp. 932-938 ◽  
Author(s):  
Tongfei Wu ◽  
Yongzheng Pan ◽  
Hongqian Bao ◽  
Lin Li
RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60180-60186 ◽  
Author(s):  
Saira Bibi ◽  
Gareth J. Price ◽  
Tariq Yasin ◽  
Mohsan Nawaz

Novel eco-friendly chitosan nanocomposite membranes containing gold nanoparticles and carbon nanotubes (CNTs) have been synthesized to produce reusable catalytic membranes.


2019 ◽  
Vol 16 (2) ◽  
pp. 855-862 ◽  
Author(s):  
Yang-Chih Hsueh ◽  
Chia-Te Hu ◽  
Chih-Chieh Wang ◽  
Chueh Liu ◽  
Tsong-Pyng Perng

Synlett ◽  
2021 ◽  
Author(s):  
Chao Lu ◽  
Xi Chen

Flexible strain sensors with superior flexibility and high sensitivity are critical to artificial intelligence. And it is favorable to develop highly sensitive strain sensors with simple and cost effective method. Here, we have prepared carbon nanotubes enhanced thermal polyurethane nanocomposites with good mechanical and electrical properties for fabrication of highly sensitive strain sensors. The nanomaterials have been prepared through simple but effective solvent evaporation method, and the cheap polyurethane has been utilized as main raw materials. Only a small quantity of carbon nanotubes with mass content of 5% has been doped into polyurethane matrix with purpose of enhancing mechanical and electrical properties of the nanocomposites. As a result, the flexible nanocomposite films present highly sensitive resistance response under external strain stimulus. The strain sensors based on these flexible composite films deliver excellent sensitivity and conformality under mechanical conditions, and detect finger movements precisely under different bending angles.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2346 ◽  
Author(s):  
Stanislav Kotsilkov ◽  
Evgeni Ivanov ◽  
Nikolay Vitanov

Nanoparticles of graphene and carbon nanotubes are attractive materials for the improvement of mechanical and barrier properties and for the functionality of biodegradable polymers for packaging applications. However, the increase of the manufacture and consumption increases the probability of exposure of humans and the environment to such nanomaterials; this brings up questions about the risks of nanomaterials, since they can be toxic. For a risk assessment, it is crucial to know whether airborne nanoparticles of graphene and carbon nanotubes can be released from nanocomposites into the environment at their end-life, or whether they remain embedded in the matrix. In this work, the release of graphene and carbon nanotubes from the poly(lactic) acid nanocomposite films were studied for the scenarios of: (i) biodegradation of the matrix polymer at the disposal of wastes; and (ii) combustion and fire of nanocomposite wastes. Thermogravimetric analysis in air atmosphere, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscope (SEM) were used to verify the release of nanoparticles from nanocomposite films. The three factors model was applied for the quantitative and qualitative risk assessment of the release of graphene and carbon nanotubes from nanocomposite wastes for these scenarios. Safety concern is discussed in respect to the existing regulations for nanowaste stream.


Sign in / Sign up

Export Citation Format

Share Document