scholarly journals Eco-friendly synthesis and catalytic application of chitosan/gold/carbon nanotube nanocomposite films

RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60180-60186 ◽  
Author(s):  
Saira Bibi ◽  
Gareth J. Price ◽  
Tariq Yasin ◽  
Mohsan Nawaz

Novel eco-friendly chitosan nanocomposite membranes containing gold nanoparticles and carbon nanotubes (CNTs) have been synthesized to produce reusable catalytic membranes.

2017 ◽  
Vol 5 (26) ◽  
pp. 13730-13739 ◽  
Author(s):  
Junfeng Zheng ◽  
Meng Li ◽  
Yujian Yao ◽  
Xuan Zhang ◽  
Lianjun Wang

Zwitterionization of multiwalled carbon nanotubes is conducted via atom transfer radical polymerization and ZCNTs obtained are used as an aqueous additive to fabricate thin-film nanocomposite nanofiltration membranes.


2019 ◽  
Vol 1 (3) ◽  
pp. 1181-1185 ◽  
Author(s):  
Elumalai Gopi ◽  
Edmond Gravel ◽  
Eric Doris

Gold nanoparticles supported on carbon nanotubes efficiently catalyze the oxidation of alcohols to methyl esters.


RSC Advances ◽  
2015 ◽  
Vol 5 (63) ◽  
pp. 50865-50868 ◽  
Author(s):  
Simon Donck ◽  
Edmond Gravel ◽  
Nimesh Shah ◽  
Dhanaji V. Jawale ◽  
Eric Doris ◽  
...  

Carbon nanotube-supported gold nanoparticles were found to be potent catalysts in the mild deoxygenation of amine N-oxides.


2018 ◽  
Vol 35 (1) ◽  
pp. 45-64 ◽  
Author(s):  
N Ghane ◽  
S Mazinani ◽  
AA Gharehaghaji

This study aims at fabrication and characterization of two different structures of electrically conductive polyamide 6/multi-wall carbon nanotube nanocomposite films at different multi-wall carbon nanotube concentrations including electrospun nanofibrous and cast films. Morphology, embedded multi-wall carbon nanotubes into nanofiber, thermal behavior, electrical conductivity and wettability of films were characterized. Scanning electron microscopy images depicted that the nanofiber diameter decreased with increased nanofillers. Enhancement of crystallinity, electrical and tensile properties, and simultaneously achieving a low percolation threshold confirmed good nanotube dispersion by employing a polymeric emulsifier, polyvinylpyrrolidone. The electrospun film crystalline content increased 18.5% and the cast ones increased 46.8% at 7 wt.% multi-wall carbon nanotubes loading. The electrospun and cast membrane electrical conductivity increased by 10 and 12 orders of magnitude. These results demonstrated higher values compared to previously reported data for polyamide 6/multi-wall carbon nanotube nanocomposites. The electrospun film Young’s modulus increased 93% and that of casted one increased 267%, due to the increased crystallinity after adding carbon nanotubes into the films.


2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


2021 ◽  
Author(s):  
Manasi Doshi ◽  
Eric Paul Fahrenthold

Explosives and hazardous gas sensing using carbon nanotube (CNT) based sensors has been a focus of considerable experimental research. The simplest sensors have employed a chemiresistive sensing mechanism, and rely...


Author(s):  
Mohammad Hamza Kirmani ◽  
Geeta Sachdeva ◽  
Ravindra Pandey ◽  
Gregory M. Odegard ◽  
Richard Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document