The role of SEBS in tailoring the interface between the polymer matrix and exfoliated graphene nanoplatelets in hybrid composites

2015 ◽  
Vol 163 ◽  
pp. 182-189 ◽  
Author(s):  
Jyotishkumar Parameswaranpillai ◽  
George Joseph ◽  
K.P. Shinu ◽  
P.R. Sreejesh ◽  
Seno Jose ◽  
...  
2021 ◽  
Vol 287 ◽  
pp. 129263
Author(s):  
Siva Sankar Nemala ◽  
Sujitha Ravulapalli ◽  
Purnendu Kartikay ◽  
Ramu Banavath ◽  
Sudhanshu Mallick ◽  
...  

Author(s):  
Tugba Mutuk ◽  
Mevlüt Gürbüz

Abstract This study reports on silicon nitride (Si3N4) and graphene nanoplatelets binary powder reinforced hybrid titanium composites obtained by a powder metallurgy method. Si3N4 powder was added at 3 wt.% and graphene nanoplatelets were added in various amounts (0.15, 0.30, 0.45, 0.60 wt.%) in the titanium matrix. Density, micro-Vickers hardness, compressive behavior, wear properties and microstructure of the hybrid composites were evaluated. Addition of different percentages of graphene nanoplatelets and 3 wt.% Si3N4 to the titanium matrix composites significantly enhanced mechanical properties. The highest hardness (634 HV) and compressive strength (1458 MPa) values were measured for 0.15 wt.% graphene nanoplatelets and 3 wt.% Si3N4 added titanium hybrid composite. The lowest mass loss and wear rate (Δm = 4 mg, W = 6.1×10–5 mm3 (N m)–1) values were measured for the same 0.15 wt.% graphene nanoplatelets and 3 wt.% Si3N4 added titanium hybrid composite compared with pure Ti.


2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


2019 ◽  
Vol 9 (3) ◽  
pp. 391 ◽  
Author(s):  
Anton Koroliov ◽  
Genyu Chen ◽  
Kenneth M. Goodfellow ◽  
A. Nick Vamivakas ◽  
Zygmunt Staniszewski ◽  
...  

The terahertz time-domain spectroscopy (THz-TDS) technique has been used to obtain transmission THz-radiation spectra of polymer nanocomposites containing a controlled amount of exfoliated graphene. Graphene nanocomposites (1 wt%) that were used in this work were based on poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) matrix and were prepared via a kilo-scale (suitable for research and development, and prototyping) in-situ polymerization. This was followed by compression molding into 0.3-mm-thick and 0.9-mm-thick foils. Transmission electron microscopy (TEM) and Raman studies were used to confirm that the graphene nanoflakes dispersed in a polymer matrix consisted of a few-layer graphene. The THz-radiation transients were generated and detected using a low-temperature–grown GaAs photoconductive emitter and detector, both excited by 100-fs-wide, 800-nm-wavelength optical pulses, generated at a 76-MHz repetition rate by a Ti:Sapphire laser. Time-domain signals transmitted through the nitrogen, neat polymer reference, and 1-wt% graphene-polymer nanocomposite samples were recorded and subsequently converted into the spectral domain by means of a fast Fourier transformation. The spectral range of our spectrometer was up to 4 THz, and measurements were taken at room temperature in a dry nitrogen environment. We collected a family of spectra and, based on Fresnel equations, performed a numerical analysis, that allowed us to extract the THz-frequency-range refractive index and absorption coefficient and their dependences on the sample composition and graphene content. Using the Clausius-Mossotti relation, we also managed to estimate the graphene effective dielectric constant to be equal to ~7 ± 2. Finally, we extracted from our experimental data complex conductivity spectra of graphene nanocomposites and successfully fitted them to the Drude-Smith model, demonstrating that our graphene nanoflakes were isolated in their polymer matrix and exhibited highly localized electron backscattering with a femtosecond relaxation time. Our results shed new light on how the incorporation of exfoliated graphene nanoflakes modifies polymer electrical properties in the THz-frequency range. Importantly, they demonstrate that the complex conductivity analysis is a very efficient, macroscopic and non-destructive (contrary to TEM) tool for the characterization of the dispersion of a graphene nanofiller within a copolyester matrix.


Sign in / Sign up

Export Citation Format

Share Document