Mechanical response and network characterization of conductive polyaniline/polyacrylamide gels

2017 ◽  
Vol 187 ◽  
pp. 88-95 ◽  
Author(s):  
Ivan Y. Dmitriev ◽  
Paul V. Vlasov ◽  
Marina F. Lebedeva ◽  
Iosif V. Gofman ◽  
Vladimir Y. Elokhovsky ◽  
...  
Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


1975 ◽  
Vol 30 (11-12) ◽  
pp. 781-784 ◽  
Author(s):  
E. Jürgen Zöllner ◽  
Hans Störger ◽  
Hans-Joachim Breter ◽  
Rudolf Zahn

Abstract Deoxyribonucleases, Disc Electrophoresis, Lymphocytes Four groups of deoxyribonuclease activities from human lymphocytes have been characterized by deoxyribonuclease assay in DNA-containing polyacrylamide gels following their separation by disc-electrophoresis. All activities hydrolyse DNA endonucleolytically. One neutral deoxyribo­ nuclease found in the cytoplasmic fraction prefers native or UV-irradiated DNA over denatured DNA as substrate and is a 5′-monoester former. Two groups of acid deoxyribonuclease activities are detectable in the nuclear fraction. Both are 3′-monoester formers. One is as well active with denatured DNA as with native DNA, the other one shows the same activity with native and UV-irradiated DNA but lower activity with denatured DNA. An alkaline deoxyribonuclease activity, also localized in the nucleus, is a 5′ -monoester DNA as substrate.


2021 ◽  
Vol 2 (3) ◽  
pp. 100035
Author(s):  
Walter Cuba ◽  
Anahi Rodriguez-Martinez ◽  
Diego A. Chavez ◽  
Fabio Caccioli ◽  
Serafin Martinez-Jaramillo

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1252
Author(s):  
Hadar Elyashiv ◽  
Revital Bookman ◽  
Lennart Siemann ◽  
Uri ten Brink ◽  
Katrin Huhn

The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.


2017 ◽  
Vol 197 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Karen L. Anderson ◽  
Christopher Page ◽  
Mark F. Swift ◽  
Praveen Suraneni ◽  
Mandy E.W. Janssen ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36715-36726 ◽  
Author(s):  
Bakhshali Massoumi ◽  
Somayeh Davtalab ◽  
Mehdi Jaymand ◽  
Ali Akbar Entezami

The aim of this study is the synthesis, and characterization of novel type AB2 Y-shaped miktoarm star conductive polyaniline-modified poly(ethylene glycol), and preparation of its electrospun nanofibers blend with poly(ε-caprolactone).


1989 ◽  
Vol 92 (2) ◽  
pp. 163-171
Author(s):  
J.B. Ulmer ◽  
E.D. Dolci ◽  
G.E. Palade

We have identified mature and putative precursor forms of glycophorins expressed in a virus-transformed murine erythroleukaemia (MEL) cell line and compared them with their normal erythroblast counterparts. The following differences were found: (1) the two major MEL cell glycophorins (apparent Mr values 29–30 and 43(x10(3] have greater mobility on polyacrylamide gels than their normal gp-3 and gp-2 counterparts, due at least in part to differences in their oligosaccharide sidechains; (2) MEL cell gp-3 consists of two discrete proteins; and (3) there are more potential glycophorin precursors in MEL cells than in normal mouse erythroblasts. Four proteins, with apparent Mr values of 21, 23, 26 and 27(x10(3], have tentatively been identified as glycophorin precursors, based on the following findings: (1) they are immunologically related to the glycophorins; and (2) their synthesis was induced by dimethyl sulphoxide coincidentally with that of gp-3 and gp-2. They do not appear to be glycoproteins, as evidenced by their lack of incorporation of [3H]galactose, [3H]glucosamine or [3H]mannose. In contrast, gp-3 and gp-2 incorporated [3H]galactose and [3H]glucosamine but not [3H]mannose. Partial characterization of the glycan moieties of MEL cell glycophorins indicates that they consist mostly of tri- and tetrasaccharides, with no indication of any N-linked chains. Hence, the glycans of MEL cell glycophorins are mostly (if not all) O-linked. Furthermore, treatment with N-glycanase did not change their electrophoretic mobility on polyacrylamide gels. MEL cell glycophorins were also shown to be modified by phosphoryl and fatty acyl groups.


1975 ◽  
Vol 21 (12) ◽  
pp. 2019-2027
Author(s):  
M. Laguerre ◽  
R. Turcotte

The tuberculin activity of protoplasmic extracts isolated from living BCG was purified successively by gel filtration on Sephadex G-100 and G-75, and by electrophoresis on 7.5% and on gradient (6–18%) polyacrylamide gels. The tuberculin-active fractions, as determined in BCG-sensitized guinea pigs, were used as the starting material for each of the following fractionation steps.The physicochemical properties and the antigenic activity of the biologically active fractions have shown that a single component, or only a few ones with similar properties, possessed high tuberculin activity. These active components were proteins having relatively high molecular weights (about 72 000) and could behave as antigens.


Sign in / Sign up

Export Citation Format

Share Document