Adsorption-enhanced reductive degradation of methyl orange by Fe73.3Co10Si4B8P4Cu0.7 amorphous alloys

2020 ◽  
Vol 242 ◽  
pp. 122307
Author(s):  
Dongmei Zeng ◽  
Zhenhua Dan ◽  
Fengxiang Qin ◽  
Hui Chang
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Razium Ali Soomro ◽  
Ayman Nafady ◽  
Sirajuddin ◽  
Syed Tufail Hussain Sherazi ◽  
Nazar Hussain Kalwar ◽  
...  

The study describes the application of oxidation resistant copper nanostructures as an efficient heterogeneous catalyst for the treatment of organic dye containing waste waters. Copper nanostructures were synthesized in an aqueous environment using modified surfactant assisted chemical reduction route. The synthesized nanostructures have been characterized by UV-Vis, Fourier transform infrared spectroscopy FTIR spectroscopy, Atomic force microscopy (AFM), Scanning Electron Microscopy (SEM), and X-ray diffractometry (XRD). These surfactant capped Cu nanostructures have been used as a heterogeneous catalyst for the comparative reductive degradation of methyl orange (MO) in the presence of sodium borohydride (NaBH4) used as a potential reductant. Copper nanoparticles (Cu NPs) were found to be more efficient compared to copper nanorods (Cu NRds) with the degradation reaction obeying pseudofirst order reaction kinetics. Shape dependent catalytic efficiency was further evaluated from activation energy (EA) of reductive degradation reaction. The more efficient Cu NPs were further employed for reductive degradation of real waste water samples containing dyes collected from the drain of different local textile industries situated in Hyderabad region, Pakistan.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.


2019 ◽  
Vol 95 ◽  
pp. 105933
Author(s):  
Guohui Wang ◽  
Ruiqi Huang ◽  
Annan Zhou ◽  
Qinghong Xu

Sign in / Sign up

Export Citation Format

Share Document