Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories

Author(s):  
Juan E. Ruiz-Castro ◽  
Christian Acal ◽  
Ana M. Aguilera ◽  
M. Carmen Aguilera-Morillo ◽  
Juan B. Roldán
1972 ◽  
Vol 69 (1) ◽  
pp. 67-76
Author(s):  
Rolf Plesner

ABSTRACT Twenty-two fertile women were treated cyclically in from 4–30 cycles (mean 15.5) with a total of 341 injections of Deladroxate®, an injectable, long-acting oestrogen-progestogen. The injections were administered on the 8th (7th–9th) day of each cycle. Before treatment, the last pre-treatment cycle was controlled by means of daily recordings of the basal body temperature (BBT), urinary excretion of pregnanediol and total pituitary gonadotrophins at certain intervals, and by endometrial biopsies obtained late in the cycle. The effects of Deladroxate® on ovulation, on pituitary gonadotrophic function, and on the endometrium were controlled by the above mentioned parameters during cycles 1, 3, and 6, and all assessments were repeated after discontinuation of treatment. During treatment, there was a statistically significant fall in gonadotrophin excretion values (as compared with the pre-treatment values), and the fall was found to be gradually progressive during treatment. After discontinuation of treatment, there seemed to be a tendency towards an increase in the excretion values. Suppression of ovulation as determined by means of the pregnanediol excretion during treatment, was effective in nearly all of the treatment cycles checked. The fall in pregnanediol excretion was also gradually progressive during treatment, while there was a slight increase in excretion values in the post-treatment period. During treatment, 79 BBT curves were recorded. Nearly 50 % were monophasic, indicating anovulatory cycles, 17 curves were biphasic, but with the rise in temperature occurring at non-characteristic times in the cycles, 18 curves were classified as thermogenic because of a rise in temperature occurring within 24 hours after the injection, and 5 curves were not assessable. During the first month after discontinuation of treatment, 8 out of 10 recorded curves were monophasic. Out of 53 endometrial biopsies obtained around the 23rd day of the cycle, 31 were of the mixed phase type, but showing a predominance of proliferative patterns, 15 were of the secretory type, and 7 were purely proliferative. Out of 15 biopsies obtained in the post-treatment period, only two were of the mixed phase type, 12 were proliferative and one was purely secretory.


2020 ◽  
Author(s):  
Junaid Khan

While self mixing interferometry(SMI) has proven to be suitable for displacement measurement and other sensing applications,its characteristic self mixing signal shape is strongly governed by the non-linear phase equation which forms relation between perturbed and unperturbed phase of self mixing laser.Therefore, while it is desirable for robust estimation of displacement of moving target, the algorithms to achieve this must have an objective strategy which can be achieved by understanding the characteristic of extracting knowledge of perturbed phase from unperturbed phase. Therefore, it has been proved and shown that such strategy must not involve sole methods where perturbed phase is continuous function of unperturbed phase (e.g:Taylor series or fixed point methods) or through successive displacements (e.g: variations of Gauss Seidal method). Subset of this strategy is to perform spectral filtering of perturbed phase followed by perturbative or homotopic deformation. A less computationally expensive approach of this strategy is adopted to achieve displacement with mean error of 62.2nm covering all feedback regimes, when coupling factor 'C' is unknown.<br>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuqi Zhang ◽  
Qing Wang ◽  
Rui Yang ◽  
Chuang Dong

AbstractThe phase-type of a stainless steel is generally predicted by equivalent equations in terms of a major austenitic (γ) or ferritic (α) stabilizer Ni or Cr. The present paper attempts to understand the equivalent methods in stainless steels via the slopes of the phase boundary lines separating γ and γ + α phase zones. The prevailing equivalent coefficients are well interpreted using the slope ratios of the alloying elements divided by that of Ni or Cr, after analyzing over one hundred common stainless steels. Different from traditional composition equivalents which evaluate γ stabilizers and α stabilizers separately; the new equivalent scheme provides a unified phase stabilizing parameter for all alloying elements in stainless steels. This parameter is defined as γ stabilizing efficiency. Its negative or positive sign indicates γ stabilizer or α stabilizer, and its value represents the stabilizing efficiency.


Sign in / Sign up

Export Citation Format

Share Document