Explorative Analysis of fMRI Data: Why Functional PCA should Usually be Preferred to ICA

2004 ◽  
Vol 35 (03) ◽  
Author(s):  
R Viviani ◽  
G Groen ◽  
H Walter
Keyword(s):  
2003 ◽  
Vol 14 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Walter Sturm

Abstract: Behavioral and PET/fMRI-data are presented to delineate the functional networks subserving alertness, sustained attention, and vigilance as different aspects of attention intensity. The data suggest that a mostly right-hemisphere frontal, parietal, thalamic, and brainstem network plays an important role in the regulation of attention intensity, irrespective of stimulus modality. Under conditions of phasic alertness there is less right frontal activation reflecting a diminished need for top-down regulation with phasic extrinsic stimulation. Furthermore, a high overlap between the functional networks for alerting and spatial orienting of attention is demonstrated. These findings support the hypothesis of a co-activation of the posterior attention system involved in spatial orienting by the anterior alerting network. Possible implications of these findings for the therapy of neglect are proposed.


Author(s):  
Hussain A. Jaber ◽  
Ilyas Çankaya ◽  
Hadeel K. Aljobouri ◽  
Orhan M. Koçak ◽  
Oktay Algin

Background: Cluster analysis is a robust tool for exploring the underlining structures in data and grouping them with similar objects. In the researches of Functional Magnetic Resonance Imaging (fMRI), clustering approaches attempt to classify voxels depending on their time-course signals into a similar hemodynamic response over time. Objective: In this work, a novel unsupervised learning approach is proposed that relies on using Enhanced Neural Gas (ENG) algorithm in fMRI data for comparison with Neural Gas (NG) method, which has yet to be utilized for that aim. The ENG algorithm depends on the network structure of the NG and concentrates on an efficacious prototype-based clustering approach. Methods: The comparison outcomes on real auditory fMRI data show that ENG outperforms the NG and statistical parametric mapping (SPM) methods due to its insensitivity to the ordering of input data sequence, various initializations for selecting a set of neurons, and the existence of extreme values (outliers). The findings also prove its capability to discover the exact and real values of a cluster number effectively. Results: Four validation indices are applied to evaluate the performance of the proposed ENG method with fMRI and compare it with a clustering approach (NG algorithm) and model-based data analysis (SPM). These validation indices include the Jaccard Coefficient (JC), Receiver Operating Characteristic (ROC), Minimum Description Length (MDL) value, and Minimum Square Error (MSE). Conclusion: The ENG technique can tackle all shortcomings of NG application with fMRI data, identify the active area of the human brain effectively, and determine the locations of the cluster center based on the MDL value during the process of network learning.


Author(s):  
Lizhen Shao ◽  
Cong Fu ◽  
Yang You ◽  
Dongmei Fu
Keyword(s):  

2021 ◽  
Vol 1937 (1) ◽  
pp. 012014
Author(s):  
S Anitha ◽  
S Thomas Geroge
Keyword(s):  

2021 ◽  
Vol 11 (13) ◽  
pp. 6216
Author(s):  
Aikaterini S. Karampasi ◽  
Antonis D. Savva ◽  
Vasileios Ch. Korfiatis ◽  
Ioannis Kakkos ◽  
George K. Matsopoulos

Effective detection of autism spectrum disorder (ASD) is a complicated procedure, due to the hundreds of parameters suggested to be implicated in its etiology. As such, machine learning methods have been consistently applied to facilitate diagnosis, although the scarcity of potent autism-related biomarkers is a bottleneck. More importantly, the variability of the imported attributes among different sites (e.g., acquisition parameters) and different individuals (e.g., demographics, movement, etc.) pose additional challenges, eluding adequate generalization and universal modeling. The present study focuses on a data-driven approach for the identification of efficacious biomarkers for the classification between typically developed (TD) and ASD individuals utilizing functional magnetic resonance imaging (fMRI) data on the default mode network (DMN) and non-physiological parameters. From the fMRI data, static and dynamic connectivity were calculated and fed to a feature selection and classification framework along with the demographic, acquisition and motion information to obtain the most prominent features in regard to autism discrimination. The acquired results provided high classification accuracy of 76.63%, while revealing static and dynamic connectivity as the most prominent indicators. Subsequent analysis illustrated the bilateral parahippocampal gyrus, right precuneus, midline frontal, and paracingulate as the most significant brain regions, in addition to an overall connectivity increment.


2021 ◽  
Vol 352 ◽  
pp. 109084
Author(s):  
Valeria Saccà ◽  
Alessia Sarica ◽  
Andrea Quattrone ◽  
Federico Rocca ◽  
Aldo Quattrone ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 216 ◽  
Author(s):  
Jianjia Wang ◽  
Xichen Wu ◽  
Mingrui Li ◽  
Hui Wu ◽  
Edwin Hancock

This paper seeks to advance the state-of-the-art in analysing fMRI data to detect onset of Alzheimer’s disease and identify stages in the disease progression. We employ methods of network neuroscience to represent correlation across fMRI data arrays, and introduce novel techniques for network construction and analysis. In network construction, we vary thresholds in establishing BOLD time series correlation between nodes, yielding variations in topological and other network characteristics. For network analysis, we employ methods developed for modelling statistical ensembles of virtual particles in thermal systems. The microcanonical ensemble and the canonical ensemble are analogous to two different fMRI network representations. In the former case, there is zero variance in the number of edges in each network, while in the latter case the set of networks have a variance in the number of edges. Ensemble methods describe the macroscopic properties of a network by considering the underlying microscopic characterisations which are in turn closely related to the degree configuration and network entropy. When applied to fMRI data in populations of Alzheimer’s patients and controls, our methods demonstrated levels of sensitivity adequate for clinical purposes in both identifying brain regions undergoing pathological changes and in revealing the dynamics of such changes.


Sign in / Sign up

Export Citation Format

Share Document