Manufacturing composite beams reinforced with three-dimensionally patterned-oriented carbon nanotubes through microfluidic infiltration

2012 ◽  
Vol 41 ◽  
pp. 214-225 ◽  
Author(s):  
Rouhollah D. Farahani ◽  
Maryam Pahlavanpour ◽  
Hamid Dalir ◽  
Brahim Aissa ◽  
My Ali El Khakani ◽  
...  
2016 ◽  
Vol 19 (2) ◽  
pp. 231-258 ◽  
Author(s):  
Mahmood Heshmati ◽  
Bandar Astinchap ◽  
Masoud Heshmati ◽  
Mohammad Hosein Yas ◽  
Yasser Amini

In this paper, a set of numerical and experimental studies are performed to improve mechanical and vibrational properties of carbon nanotubes-reinforced composites. First, at a design concept level, linear distribution patterns of multi-walled carbon nanotubes through the thickness of a typical beam is adopted to investigate its fundamental natural frequency for a given weight percent of multi-walled carbon nanotubes. Both Timoshenko and Euler-Bernoulli beam theories are used in the derivation of the governing equations. The finite element method is employed to obtain a numerical approximation of the motion equation. Next, based on the introduced distribution patterns, laminated multi-walled carbon nanotubes-reinforced polystyrene-amine composite beams are fabricated. Static and experimental modal tests are performed to measure the effective stiffness and fundamental natural frequencies of the fabricated composite beams. Also, in order to generate realistic model to investigate the material properties of fabricated composite beams, the actual tensile specimens of multi-walled carbon nanotubes/polystyrene-amine composites are successfully fabricated and the tensile behaviors of both pure matrix and composites are investigated. To better interfacial bonding between carbon nanotubes and polymer, a chemical treatment is performed on carbon nanotubes. It is seen that the addition of a few wt. % of multi-walled carbon nanotubes make considerable increase in the Young's modulus and the tensile strength of the composite. It is observed from the free vibration tests that the uniform distribution of multi-walled carbon nanotubes results in an increase of 9.5% in the fundamental natural frequency of the polymer cantilever beam, whereas using the symmetric multi-walled carbon nanotube distribution increased its fundamental natural frequency by 17.32%.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Soraya Mareishi ◽  
Hamed Kalhori ◽  
Mohammad Rafiee ◽  
Seyedeh Marzieh Hosseini

AbstractThis paper presents an analytical solution for nonlinear free and forced vibration response of smart laminated nano-composite beams resting on nonlinear elastic foundation and under external harmonic excitation. The structure is under a temperature change and an electric excitation through the piezoelectric layers. Different distribution patterns of the single walled aligned and straight carbon nanotubes (SWCNTs) through the thickness of the beam are considered. The beam complies with Euler-Bernoulli beam theory and von Kármán geometric nonlinearity. The nonlinearity is due to the mid-plane stretching of the beam and the nonlinear stiffness of the elastic foundation. The Multiple Time Scales perturbation scheme is used to perform the nonlinear dynamical analysis of functionally graded carbon nanotube-reinforced beams. Analytical expressions of the nonlinear natural frequencies, nonlinear dynamic response and frequency response of the system in the case of primary resonance have been presented. The effects of different parameters including applied voltage, temperature change, beam geometry, the volume fraction and distribution pattern of the carbon nanotubes on the nonlinear natural frequencies and frequency-response curves are presented. It is found that the volume fractions of SWCNTs as well as their distribution pattern significantly change the behavior of the system.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 571
Author(s):  
Ömer Civalek ◽  
Şeref D. Akbaş ◽  
Bekir Akgöz ◽  
Shahriar Dastjerdi

This paper presents forced vibration analysis of a simply supported beam made of carbon nanotube-reinforced composite material subjected to a harmonic point load at the midpoint of beam. The composite beam is made of a polymeric matrix and reinforced the single-walled carbon nanotubes with their various distributions. In the beam kinematics, the first-order shear deformation beam theory was used. The governing equations of problem were derived by using the Lagrange procedure. In the solution of the problem, the Ritz method was used, and algebraic polynomials were employed with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the Newmark average acceleration method was applied in the time history. In the numerical examples, the effects of carbon nanotube volume fraction, aspect ratio, and dynamic parameters on the forced vibration response of carbon nanotube-reinforced composite beams are investigated. In addition, some comparison studies were performed, with special results of published papers to validate the using formulations.


2018 ◽  
Vol 10 (03) ◽  
pp. 1850032 ◽  
Author(s):  
M. Rafiee ◽  
F. Nitzsche ◽  
M. R. Labrosse

The present work addresses with the cross-sectional design and analysis of fiber-reinforced multiscale composite beams of general cross-sectional shape and arbitrary anisotropic material properties and investigates the effect of carbon nanotubes (CNTs) on their stiffness properties. The three-dimensional strain field was formulated in terms of one-dimensional strains and a three-dimensional warping displacement. The bulk material properties of the multiscale composite were predicted using Halpin–Tsai equations and fiber micromechanics. The carbon nanotubes were assumed to be uniformly distributed and randomly oriented throughout the polymer matrix. The variational asymptotic beam section (VABS) was used to numerically evaluate the stiffness and mass matrices of four test cases: strip, circular pipe, box beam and airfoil. The influence of CNTs weight percentage and volume fraction of fibers was investigated through a detailed parametric study. The numerical results indicate that the inclusion of a small weight percentage of carbon nanotubes in the polymer matrix is sufficient to induce a significant improvement in stiffness properties.


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


Sign in / Sign up

Export Citation Format

Share Document