scholarly journals 3D Laser Shock Peening – A new method for the 3D control of residual stresses in Selective Laser Melting

2017 ◽  
Vol 130 ◽  
pp. 350-356 ◽  
Author(s):  
Nikola Kalentics ◽  
Eric Boillat ◽  
Patrice Peyre ◽  
Cyril Gorny ◽  
Christoph Kenel ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1078
Author(s):  
Long Ma ◽  
Wanqing Li ◽  
Yongzhi Yang ◽  
Yuanxue Ma ◽  
Kai Luo ◽  
...  

NiTi alloys are commonly used in many fields such as aerospace, mechanical engineering due to their excellent mechanical properties and shape memory effect. In recent years, the emergence of selective laser melting (SLM) technology provides a new method for the preparation of NiTi parts. But the surface corrosion failure of SLM-NiTi is the most common problem. This paper mainly focuses on the research of femtosecond laser shock peening of the surface of SLM-NiTi alloy to improve the corrosion resistance. Selecting different scanning space (1 μm, 3 μm, 5 μm, 10 μm), and analyze the surface morphology of the material through the OM, SEM, EDS and white light interferometer, and investigate the surface nanohardness and corrosion resistance through nanoindentation and electrochemical testing. The research results show that part of the TiO2 is formed under different scanning spaces, and part of NiO is formed when the scanning space is 1μm. At the same time, it is found that the sample under the condition of 10 μm has the most excellent corrosion resistance and nanohardness. The nanohardness reaches 1303 ± 40 HV and the corrosion current density reaches 1.45 ± 0.1 × 10−9 A·cm−2. Proper femtosecond laser treatment can effectively improve the surface strength and corrosion resistance of the NiTi alloys.


2019 ◽  
Vol 266 ◽  
pp. 612-618 ◽  
Author(s):  
N. Kalentics ◽  
K. Huang ◽  
M. Ortega Varela de Seijas ◽  
A. Burn ◽  
V. Romano ◽  
...  

2019 ◽  
Vol 30 ◽  
pp. 100881 ◽  
Author(s):  
Nikola Kalentics ◽  
Navid Sohrabi ◽  
Hossein Ghasemi Tabasi ◽  
Seth Griffiths ◽  
Jamasp Jhabvala ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3261
Author(s):  
Liang Lan ◽  
Ruyi Xin ◽  
Xinyuan Jin ◽  
Shuang Gao ◽  
Bo He ◽  
...  

Laser shock peening (LSP) is an innovative surface treatment process with the potential to change surface microstructure and improve mechanical properties of additively manufactured (AM) parts. In this paper, the influences of LSP on the microstructure and properties of Ti–6Al–4V (Ti64) titanium alloy fabricated via selective laser melting (SLM), as an attractive AM method, were investigated. The microstructural evolution, residual stress distribution and mechanical properties of SLM-built Ti64 samples were characterized before and after LSP. Results show that the SLM sample was composed of single hcp α’ phase, which deviates from equilibrium microstructure at room temperature: α + β phases. The LSP significantly refines the grains of α’ phase and produces compressive residual stress (CRS) of maximum magnitude up to −180 MPa with a depth of 250 μm. Grain refinement of α’ phase is attributed to the complex interaction of dislocations and the intersection of deformation twinning subjected to LSP treatment. The main mechanism of strength and micro-hardness enhancement via LSP is ascribed to the effects of CRS and α’ phase grain refinement.


Author(s):  
Sinisa Vukelic ◽  
Youneng Wang ◽  
Jeffrey W. Kysar ◽  
Y. Lawrence Yao

The process of laser shock peening induces compressive residual stresses in a material to improve material fatigue life. For micron sized laser beams, the size of the laser-target interaction zone is of the same order of magnitude as the target material grains, and thus the target material must be considered as being anisotropic and inhomogeneous. Single crystals are chosen to study the effects of the anisotropic mechanical properties. It is also of interest to investigate the response of symmetric and asymmetric slip systems with respect to the shocked surface. In the present study, numerical and experimental aspects of laser shock peening on two different crystal surfaces (110) and (11¯4) of aluminum single crystals are studied. Lattice rotations on the top surface and cross section are measured using electron backscatter diffraction, while residual stress is characterized using X-ray microdiffraction. A numerical model has been developed that takes into account anisotropy as well as inertial terms to predict the size and nature of the deformation and residual stresses. Obtained results were compared with the experimental finding for validation purpose.


Sign in / Sign up

Export Citation Format

Share Document