Effect of compositional variations on charge compensation of AlO4 and BO4 entities and on crystallization tendency of a rare-earth-rich aluminoborosilicate glass

2009 ◽  
Vol 44 (9) ◽  
pp. 1895-1898 ◽  
Author(s):  
A. Quintas ◽  
D. Caurant ◽  
O. Majérus ◽  
T. Charpentier ◽  
J.-L. Dussossoy
2014 ◽  
Vol 69 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Mika Lastusaari ◽  
Högne Jungner ◽  
Aleksei Kotlov ◽  
Taneli Laamanen ◽  
Lucas C. V. Rodrigues ◽  
...  

Similar to many other Eu2+,RE3+-co-doped persistent luminescence materials, for Sr2MgSi2O7:Eu2+,RE3+ the initial intensity and duration of persistent luminescence was also found to depend critically on the rare-earth (RE) co-doping. An enhancement of 1 - 2 orders of magnitude in these properties could be obtained by Dy3+ co-doping whereas total quenching of persistent luminescence resulted from the use of Sm3+ and Yb3+. To solve this drastic disparity, the effects of the individual RE3+ ions were studied with thermoluminescence (TL) spectroscopy to derive information about the formation of traps storing the excitation energy. The charge compensation defects were concluded to be the origin of the complex TL glow curve structure. The tuning of the band gap of the Sr2MgSi2O7 host and especially the position of the bottom of the conduction band due to the Eu2+,RE3+ co-doping was measured with the synchrotron radiation vacuum UV (VUV) excitation spectra of the Eu2+ dopant. The model based on the evolution of the band gap energy with RE3+ co-doping was found to explain the intensity and duration of the persistent luminescence.


1992 ◽  
Vol 287 ◽  
Author(s):  
Stephen D. Nunn ◽  
Terry N. Tiegs ◽  
Kristin L. Ploetz ◽  
Claudia A. Walls ◽  
Nelson Bell

ABSTRACTSi3N4 ceramics prepared with refractory grain boundary phases to improve high temperature properties are difficult to densify by conventional sintering methods. Gas-pressure sintering may be used to promote densification and development of acicular grains for improved fracture toughness. The current study examined rare earth silicate sintering aids with the composition M2Si2O7, where M is a trivalent cation (Y, La, Nd). M2O3 and Si02 additions were varied to develop a number of compositions in the Si3N4—Si2N2O—M2Si2O7 ternary phase field. Pressureless sintering and gas-pressure sintering were used to densify the samples. Densification, microstructure development, oxidation resistance, and mechanical properties were evaluated and compared with respect to compositional variations and processing conditions.


2020 ◽  
Vol 7 (4) ◽  
pp. 045201
Author(s):  
Qihui Lian ◽  
Xingquan Zhang ◽  
Hongjia Ji ◽  
Pengpeng Yu ◽  
Xiaofeng Guo ◽  
...  

2007 ◽  
Vol 32 (4) ◽  
pp. 613-634 ◽  
Author(s):  
A. Quintas ◽  
T. Charpentier ◽  
O. Majérus ◽  
D. Caurant ◽  
J.-L. Dussossoy ◽  
...  

2007 ◽  
Vol 90 (3) ◽  
pp. 712-719 ◽  
Author(s):  
Arnaud Quintas ◽  
Odile Majérus ◽  
Daniel Caurant ◽  
Jean-Luc Dussossoy ◽  
Philippe Vermaut

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 334
Author(s):  
Pei Liang ◽  
Yu Zhang ◽  
Yuling Xie

In order to reveal the formation mechanism of different garnets and its implications for the fluid evolution in the Laoshankou Fe-Cu-Au deposit in the northern margin of East Junggar (NW China), three types of garnet have been investigated in detail in this study. (1) Type 1 grossular, formed at Ca-silicate stage (stage I, the pre-mineralization stage), was replaced by Type 2 garnet and magnetite, and displays a compositional range of Grs44–53Adr44–53, which has relatively lower total REE (rare earth elements) contents (8.14–32.8 ppm) and markedly depleted LREE (light rare earth elements) with distinctive positive Eu anomaly (1.36–9.61). (2) Type 2 Al-rich andradite, formed at the early sub-stage of amphibole-epidote-magnetite stage (stage II, the main magnetite mineralization stage), can be divided into two sub-types, i.e., Type 2a and Type 2b. Type 2a garnets exhibit polysynthetic twinning and relatively narrow compositional variations of Adr63–66Grs31–34 with HREE-(heavy rare-earth elements) enrichment and positive Eu anomalies (3.22–3.69). Type 2b garnets own wide compositional variations of Adr55–77Grs21–43 with relatively higher REE contents (49.1–124 ppm), markedly depleted LREE and a distinctive positive Eu anomaly (2.11–4.61). (3) Type 3 andradite (Adr>91) associated with sulfide stage (stage III, the main copper-gold mineralization stage) is different from other types of garnets in Laoshankou, which are characterized by lowest total REE contents (1.66–91.1 ppm), flat HREE patterns, LREE-enrichment and the strongest positive Eu anomalies (3.31–45.48). Incorporation of REE into garnet is largely controlled by external factors, such as fluid chemistry, pH, ƒO2 and water-rock ratios as well as its crystal chemistry. Type 1 and 2 garnets mainly follow the creation of X2+ (e.g., Ca2+) site vacancy, e.g., [X2+]−3VIII[]+1VIII[REE3+]+2VIII. The REE3+ substitution mechanism for Type 3 garnet is the Na+-REE3+ coupled substitutions, e.g., [X2+]−2VIII[X+]+1VIII[REE3+]+1VIII, without the evaluation of the creation of site vacancy. The compositional variations from Type 1 to Type 3 garnet indicate significant differences of fluid compositions and physicochemical conditions, and can be used to trace the fluid–rock interaction and hydrothermal evolution of garnet. Type 1 grossular was formed by magmatic fluid under low water–rock ratios and ƒO2, and neutral pH environment by diffusion metasomatism in a nearly closed system with the preferential incorporation into the grossular of HREE. As the long fluid pore residence and continuing infiltration metasomatism under nearly closed-system conditions, fluids with high water/rock ratios were characterized by increased ƒO2, more active incorporation of Fe3+ and REE, and formed Type 2 Al-rich andradite. In contrast, Type 3 garnet formed by oxidizing magmatic fluid under a mildly acidic environment with highest ƒO2 and water–rock ratios, and was influenced by externally derived high salinity and Ca-rich fluids in an open system. Thus, the geochemical features of different types and generations of garnets in the Laoshankou deposit can provide important information of fluid evolution, revealing a transition from neutral magmatic fluid to oxidizing magmatic fluid with addition of external non-magmatic Ca-rich fluid from the Ca-silicate stage to the sulfide stage. The above proved the fluid evolution process further indicates that the Laoshankou deposit prefers to be an IOCG-like (iron oxide-copper-gold) deposit rather than a typical skarn deposit.


2018 ◽  
Vol 510 ◽  
pp. 539-550 ◽  
Author(s):  
Deepak S. Patil ◽  
Manisha Konale ◽  
Mathew Gabel ◽  
Owen K. Neill ◽  
Jarrod V. Crum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document