Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective

2021 ◽  
Vol 138 ◽  
pp. 111224 ◽  
Author(s):  
Virat Khanna ◽  
Vanish Kumar ◽  
Suneev Anil Bansal
Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1613
Author(s):  
Íris Carneiro ◽  
Sónia Simões

Carbon nanotubes (CNTs)-reinforced metal matrix composites are very attractive advanced nanocomposites due to their potential unusual combination of excellent properties. These nanocomposites can be produced by several techniques, the most reported being powder metallurgy, electrochemical routes, and stir or ultrasonic casting. However, the final mechanical properties are often lower than expected. This can be attributed to a lack of understanding concerning the strengthening mechanisms that act to improve the mechanical properties of the metal matrix via the presence of the CNTs. The dispersion of the CNTs is the main challenge in the production of the nanocomposites, and is independent of the production technique used. This review describes the strengthening mechanism that act in CNT-reinforced metal matrix nanocomposites, such as the load transfer, grain refinement or texture strengthening, second phase, and strain hardening. However, other mechanisms can occur, such as solid solution strengthening, and these depend on the metal matrix used to produce the nanocomposites. Different metallic matrices and different production techniques are described to evaluate their influence on the reinforcement of these nanocomposites.


2016 ◽  
Vol 51 (11) ◽  
pp. 1631-1642 ◽  
Author(s):  
JSS Babu ◽  
A Srinivasan ◽  
CG Kang

Nano-microhybrid reinforced metal matrix composites are the novel combination of composite system which enhanced the mechanical properties of the metal matrix composites. The aim of this study is to determine the nano- and macromechanical properties of aluminium (A356)-based hybrid composites reinforced with multiwall carbon nanotubes and alumina short fibers (Al2O3sf). Hybrid preforms were developed initially, by a combination of multiwall carbon nanotubes and Al2O3sf with total volume fractions of 10%, 15% and 20% and by varying the weight percentage of multiwall carbon nanotubes such as 1%, 2% and 3%. The fabricated hybrid preforms were then infiltrated with aluminium alloy (A356), and the microstructure and mechanical properties of the composites were evaluated. The distribution of multiwall carbon nanotubes within the array of the Al2O3sf network which exists in clusters was found to be relatively good. The mechanical properties such as the hardness and tensile strength of Al-based hybrid metal matrix composites were found to be improved by up to 2 wt% of multiwall carbon nanotubes. The causative reason for this is attributed to a combined effect of both multiwall carbon nanotubes and Al2O3sf, which contributed to better load sharing between the fibers and the Al matrix, and also accounted for the resistance of dislocation movements caused by the presence of the multiwall carbon nanotubes. In addition, the continuous stiffness measurement method was also used to evaluate the nanomechanical properties of the composites. The results showed that the influence of multiwall carbon nanotubes highlighted the properties on a nanoscale.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3947
Author(s):  
Myung Eun Suk

By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 738
Author(s):  
Xin Zhang ◽  
Shaoqing Wang

The relationship between point defects and mechanical properties has not been fully understood yet from a theoretical perspective. This study systematically investigated how the Stone–Wales (SW) defect, the single vacancy (SV), and the double vacancy (DV) affect the mechanical properties of graphene/aluminum composites. The interfacial bonding energies containing the SW and DV defects were about twice that of the pristine graphene. Surprisingly, the interfacial bonding energy of the composites with single vacancy was almost four times that of without defect in graphene. These results indicate that point defects enhance the interfacial bonding strength significantly and thus improve the mechanical properties of graphene/aluminum composites, especially the SV defect. The differential charge density elucidates that the formation of strong Al–C covalent bonds at the defects is the most fundamental reason for improving the mechanical properties of graphene/aluminum composites. The theoretical research results show the defective graphene as the reinforcing phase is more promising to be used in the metal matrix composites, which will provide a novel design guideline for graphene reinforced metal matrix composites. Furthermore, the sp3-hybridized C dangling bonds increase the chemical activity of the SV graphene, making it possible for the SV graphene/aluminum composites to be used in the catalysis field.


2020 ◽  
Author(s):  
N. Poornachandiran ◽  
R. Pugazhenthi ◽  
S. Vijay Ananth ◽  
T. Gopala Krishnan ◽  
M. Vairavel

Sign in / Sign up

Export Citation Format

Share Document