scholarly journals Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals

2017 ◽  
Vol 197 ◽  
pp. 12-16 ◽  
Author(s):  
Mahnaz Ensafi ◽  
Ghader Faraji ◽  
Hooman Abdolvand
2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


2012 ◽  
Vol 05 ◽  
pp. 299-306
Author(s):  
TERENCE G. LANGDON

Processing through the application of severe plastic deformation (SPD) provides a very attractive tool for the production of bulk ultrafine-grained materials. These materials typically have grain sizes in the submicrometer or nanometer ranges and they exhibit high strength at ambient temperature and, if the ultrafine grains are reasonably stable at elevated temperatures, they have a potential for use in superplastic forming operations. Several procedures are now available for applying SPD to metal samples but the most promising are Equal-Channel Angular Pressing (ECAP) and High-Pressure Torsion (HPT). This paper examines the basic principles of ECAP and HPT and describes some of the properties that may be achieved using these processing techniques.


2017 ◽  
Vol 743 ◽  
pp. 203-206 ◽  
Author(s):  
Alexander A. Kozulin ◽  
Vladimir A. Krasnoveikin ◽  
Vladimir A. Skripnyak ◽  
Evgeny N. Moskvichev ◽  
Valery E. Rubtsov

This study examines the effect of severe plastic deformation on the physical and mechanical properties of a light structural Al-Mg alloy. Severe plastic deformation has been performed by equal channel angular pressing through a die with an angle of 90° between the channels to produce ultrafine-grained structure in specimens of studied alloy. A complex investigation of the physical and mechanical properties of the processed alloy has been carried out to examine the microstructure and texture, and to measure microhardness, yield stress and ultimate tensile strength. The obtained results demonstrate high efficiency of the chosen treatment method and mode of producing a light ultrafine-grained alloy.


2016 ◽  
Vol 879 ◽  
pp. 1317-1322 ◽  
Author(s):  
Anna Mogucheva ◽  
Diana Yuzbekova ◽  
Tatiana Lebedkina ◽  
Mikhail Lebyodkin ◽  
Rustam Kaibyshev

The paper reports on the effect of severe plastic deformation on mechanical properties of an Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (in wt. pct.) alloy processed by equal channel angular pressing followed by cold rolling (CR). The sheets of the 5024 alloy with coarse grained (CG) structure exhibited a yield stress (YS) near 410 MPa and an ultimate tensile strength (UTS) of 480 MPa, while the YS and UTS of this material with ultrafine-grained (UFG) structure increased to 530 and 560 MPa, respectively. On the other hand, the elongation to failure decreased by a factor of 2 and 4 after CR and CR following ECAP, respectively. It was shown that dislocation strengthening attributed to extensive CR plays a major role in achieving high strength of this alloy. Besides these macroscopic characteristics, jerky flow caused by the Portevin-Le Chatelier (PLC) instability of plastic deformation was examined. The formation of UFG structure results in a transition from mixed type A+B to pure type B PLC serrations. No such effect on the serrations type was observed after CR.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022039
Author(s):  
L I Zaynullina ◽  
I V Alexandrov

Abstract This paper presents the results of the microstructure and crystallographic texture investigations of the Cu-Zn alloys system with different stacking fault energies (SFE) subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP) and subsequent flat rolling. It is shown that ECAP leads to the formation of an ultrafine-grained (UFG) structure. Further flat rolling is accompanied by a decrease in the size of structural elements and the formation of nanoscale twins, which are more likely to be detected in an alloy with a lower SFE. As the deformation degree increases, the main crystallographic textures components of the investigated alloys become Brass and Goss components.


2009 ◽  
Vol 633-634 ◽  
pp. 341-352 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Zhi Chao Duan ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

The processing of bulk metals through the application of severe plastic deformation provides an opportunity for achieving exceptional grain refinement to the submicrometer or even the nanometer range. This paper examines the characteristics of metals processed by equal-channel angular pressing with special emphasis on the levels of ductility that may be attained. It is shown that the amount of ductility is dependent not only upon the composition of the material but also, and to a major extent, upon the testing temperature. Specifically, the ductilities are often low at ambient temperatures where the strength of the as-processed material is relatively high but, by contrast, exceptionally high superplastic ductilities may be achieved over short ranges of strain rate when testing at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document