Electrospinning polyvinylidene fluoride/expanded graphite composite membranes as high efficiency and reusable water harvester

2017 ◽  
Vol 202 ◽  
pp. 78-81 ◽  
Author(s):  
Zhao-Xia Huang ◽  
Xiaoxiao Liu ◽  
Shing-Chung Wong ◽  
Jin-ping Qu
2013 ◽  
Vol 58 (4) ◽  
pp. 1331-1336 ◽  
Author(s):  
J. Berdowski ◽  
S. Berdowska ◽  
F. Aubry

Abstract The purpose of this paper was to investigate the physical and mechanical properties of compressed expanded graphite (CEG) and their porous derivatives after impregnation, polymerization; and carbonization by the use of acoustic emission method (AE). The mechanical and structural characteristics of compressed expanded graphite and their three groups of porous composites after each technological process are presented and discussed. The measurements of acoustic emission parameters in these materials were carried out at wide range of frequency of the waves (0.1÷2.5 MHz). The changes of two of parameters: - AE pulses counts rate and spectrum distribution of AE waves - are presented in this paper. The analysis of the respective parameters AE also gives possibility to determine the micro- and macro structural changes of materials at different levels of technological processes. Applications of these materials as catalysts with high specific surface make them very interesting subject of study. Also compressed expanded graphite composite membranes prepared from furfuryl alcohol polymers are promising for gas separation.


2013 ◽  
Vol 716 ◽  
pp. 373-378
Author(s):  
Qian Zhang ◽  
Xin Bao Gao ◽  
Tian Peng Li

Carbon nanotube/expanded graphite composite material was prepared by expanding the mixture of multi-walled carbon nanotubes and expansible graphite under the condition of high temperature. The microstructure and composition was studied by using SEM and XRD. The study shows that the tubular structure of carbon nanotubes in the composite material is changed by high temperature expanding process, and the microstructure is different with different expanding temperature. When the expanding temperature was 900°C, carbon nanotubes transformed, then attached to the surface of expanded graphite flake, so carbon nanotubes and expanding graphite combined strongly; globular carbon nanotubes attached to the surface of expanded graphite flake at the temperature of 700°C, both were combined much more strongly; carbon nanotubes retained the tube structure at the temperature of 500°C, combination was looser due to the simple physical adsorption. The result shows that the choice of expanding temperature has an important effect on microstructure of carbon nanotube/expanded graphite composite material.


2015 ◽  
Vol 98 (3) ◽  
pp. 817-821 ◽  
Author(s):  
Wenchang Wang ◽  
Ye Chen ◽  
Jing Zhang ◽  
Xue Wang ◽  
Zhidong Chen

Abstract A sensitive electrochemical method was developed for the simultaneous determination of Brilliant Blue (BB) and tartrazine (Tz) using an ionic liquid-modified expanded graphite paste electrode (IL-EGPE). The IL-EGPE was prepared by mixing ionic liquid-expanded graphite composite (IL-EG) with solid paraffin. Compared with the EGPE, the IL-EGPE remarkably enhanced the electrocatalytic oxidation signals of BB and Tz. Under optimal experimental conditions, the designed IL-EGPE exhibited wide linear responses to BB and Tz ranging from 5.0 × 10–9 to 4.0 × 10–6 M and 1.0 × 10–8 to 1.0 × 10–6 M, respectively. The detection limits for BB and Tz were 2.0 × 10–9 M (1.6 ng/mL) and 3.3 × 10–9 M (1.8 ng/mL) at an S/N of 3, respectively. This electrode showed good reproducibility, stability, and reusability. The proposed method was successfully applied in the simultaneous determination of BB and Tz in a soft drink with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document