Study of Properties of Expanded Graphite – Polymer Porous Composite by Acoustic Emission Method

2013 ◽  
Vol 58 (4) ◽  
pp. 1331-1336 ◽  
Author(s):  
J. Berdowski ◽  
S. Berdowska ◽  
F. Aubry

Abstract The purpose of this paper was to investigate the physical and mechanical properties of compressed expanded graphite (CEG) and their porous derivatives after impregnation, polymerization; and carbonization by the use of acoustic emission method (AE). The mechanical and structural characteristics of compressed expanded graphite and their three groups of porous composites after each technological process are presented and discussed. The measurements of acoustic emission parameters in these materials were carried out at wide range of frequency of the waves (0.1÷2.5 MHz). The changes of two of parameters: - AE pulses counts rate and spectrum distribution of AE waves - are presented in this paper. The analysis of the respective parameters AE also gives possibility to determine the micro- and macro structural changes of materials at different levels of technological processes. Applications of these materials as catalysts with high specific surface make them very interesting subject of study. Also compressed expanded graphite composite membranes prepared from furfuryl alcohol polymers are promising for gas separation.

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1386 ◽  
Author(s):  
Katarzyna Panasiuk ◽  
Leslaw Kyziol ◽  
Krzysztof Dudzik ◽  
Grzegorz Hajdukiewicz

This study analyzes the possibility of applying the acoustic emission method (AE) and the Kolmogorov-Sinai (K-S) metric entropy phenomenon in determining the structural changes that take place within the EN AW 7020 aluminum alloy. The experimental part comprised of a static tensile test carried out on aluminum alloy samples, and the simultaneous recording of the acoustic signal generated inside the material. This signal was further processed and diagrams of the effective electrical signal value (RMS) as a function of time were drawn up. The diagrams obtained were applied on tensile curves. A record of measurements carried out was used to analyze the properties of the material, applying a method based on Kolmogorov-Sinai (K-S) metric entropy. For this purpose, a diagram of metric entropy as a function of time was developed for each sample and applied on the corresponding course of stretching. The results of studies applying the AE and the K-S metric entropy method show that K-S metric entropy can be used as a method to determine the yield point of the material where there are no pronounced yield points.


2018 ◽  
Vol 174 ◽  
pp. 02003
Author(s):  
Paweł Niewiadomski

Due to the new challenges posed to engineering constructions, as well as the principles of sustainable development, many laboratories around the world are carrying out works to improve the basic structural material that is concrete. There has recently been a lot of interest in modifying concrete with nano-sized particles. Literature reviews indicate that their addition significantly improves the physical and mechanical properties of the concrete that was obtained with their use. Until now, there is no knowledge of the effect of nano-additives on the process of destroying temporarily compressed concrete. One test method that enables the parameters that describe the stress failure of concrete to be determined is the acoustic emission method. This work fills the gap in the literature and presents the results of the author's own research on the impact of the use of different amounts of nano-additive TiO2 on the failure process of selfcompacting concrete that was made solely on the basis of granite aggregate. The stress failure of the tested concrete was described using the stress levels (determined using the acoustic emission method) that initiate the cracking σi and critical stresses σcr that delimit the tested process. The descriptors that were used for this purpose are the rate of counts and the average effective value of the acoustic emission signal.


2016 ◽  
Vol 258 ◽  
pp. 477-480
Author(s):  
Vendula Kratochvilova ◽  
Lucie Zemanova ◽  
František Vlasic ◽  
Pavel Mazal

This paper deals with the evaluation of the fatigue tests and subsequent analyses of damage processes in selective laser melting (SLM) materials under bending loading. Compared to conventional production technologies (casting, forming and machining), SLM offers a wide range of benefits, e.g. production with no need for expensive molds, very low material waste and the possibility to create complex geometric shapes. The acoustic emission method was used to fully understand the processes which appear in the stages preceding the crack initiation. The fatigue tests at room temperature were conducted on standard wrought 2618A aluminium alloy as a representative testing material and the same material created by SLM. The main aim of the study was to compare the acoustic emission signal during fatigue loading at different manufacturing parameters of SLM material and to analyze in detail the signal changes in initial stages of fatigue process. The results show the high sensitivity of the acoustic emission technique to the fracture behaviour of SLM material and transition from the stage of surface relief evolution to the stage of crack nucleation and propagation. After completion of dynamic mechanical tests, a detailed fractographic analysis was conducted to assess material response to mechanical loading. Attention was focused on determining the predominant failure mechanisms and the influence of defects or inhomogeneities such as pores, cavities, etc. resulting from the production of materials using SLM method.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Justyna Zapała-Sławeta ◽  
Grzegorz Świt

The study analyzed the possibility of using the acoustic emission method to analyse the reaction of alkali with aggregate in the presence of lithium nitrate. Lithium nitrate is a chemical admixture used to reduce adverse effects of corrosion. The tests were carried out using mortars with reactive opal aggregate, stored under the conditions defined by ASTM C227. The acoustic activity of mortars with a corrosion inhibitor was referred to linear changes and microstructure of specimens in the initial reaction stages. The study found a low acoustic activity of mortars with lithium nitrate. Analysis of characteristic parameters of acoustic emission signals, combined with the observation of changes in the microstructure, made it possible to describe the corrosion processes. As the reaction progressed, signals with different characteristics were recorded, indicating aggregate cracking at the initial stage of the reaction, followed by cracking of the cement paste. The results, which were referred to the acoustic activity of reference mortars, confirmed that the reaction of opal aggregate with alkali was mitigated in mortars with lithium nitrate, and the applied acoustic emission method enabled the detection and monitoring of ASR progress.


2016 ◽  
Vol 837 ◽  
pp. 198-202
Author(s):  
Luboš Pazdera ◽  
Libor Topolář ◽  
Tomáš Vymazal ◽  
Petr Daněk ◽  
Jaroslav Smutny

The aim of the paper is focused on the analysis of the mechanical properties of the concrete specimens with plasticizer at three point bending test by the signal analysis of the acoustic emission signal. The evaluations were compared the measurement and the results obtained with theoretical presumptions. The Joint Time Frequency Analysis applied on measurement data and its evaluation is described. It is well known that the Acoustic Emission Method is a very sensitive method to determine active cracks into structure. However, evaluation of acoustic emission signals is very difficult. A non-traditional method was used to signal analysis of burst acoustic emission signals recorded during three point bending test.


2014 ◽  
Vol 7 (2) ◽  
pp. 703-709 ◽  
Author(s):  
Kazuho Mizuta ◽  
Yukio Nishizawa ◽  
Koji Sugimoto ◽  
Katsuya Okayama ◽  
Alan Hase

Sign in / Sign up

Export Citation Format

Share Document