Combination of hot isostatic pressing and subsequent heat treatment for additively manufactured Zr-1Mo components

2021 ◽  
Vol 285 ◽  
pp. 129123
Author(s):  
Xiaohao Sun ◽  
Debao Liu ◽  
Minfang Chen ◽  
Weiwei Zhou ◽  
Naoyuki Nomura ◽  
...  
2017 ◽  
Vol 688 ◽  
pp. 371-377 ◽  
Author(s):  
Liu Chen ◽  
Langping Zhu ◽  
Yongjun Guan ◽  
Bao Zhang ◽  
Jiancong Li

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 753 ◽  
Author(s):  
Kanwal Chadha ◽  
Yuan Tian ◽  
John Spray ◽  
Clodualdo Aranas

In this work, the microstructural features and mechanical properties of an additively manufactured 316L stainless steel have been determined. Three types of samples were characterized: (i) as printed (AP), (ii) annealing heat treated (AHT), and (iii) hot isostatic pressed and annealing heat treated (HIP + AHT). Microstructural analysis reveals that the AP sample formed melt pool boundaries with nano-scale cellular structures. These structures disappeared after annealing heat treatment and hot isostatic pressing. The AP and AHT samples have similar grain morphologies; however, the latter has a lower dislocation density and contains precipitates. Conversely, the HIP + AHT sample displays polygon-shaped grains with twin structures; a completely different morphology compared to the first two samples. Optical micrography reveals that the application of hot isostatic pressing reduces the porosity generated after laser processing. The tensile strengths of all the samples are comparable (about 600 MPa); however, the elongation of the HIP + AHT sample (48%) was superior to that of other two samples. The enhanced ductility of the HIP + AHT sample, however, resulted in lower yield strength. Based on these findings, annealing heat treatment after hot isostatic pressing was found to improve the ductility of as-printed 316L stainless steel by as much as 130%, without sacrificing tensile strength, but the sample may have a reduced (40%) yield strength. The tensile strength determined here has been shown to be higher than that of the hot isostatic pressed, additively manufactured 316L stainless steel available from the literature.


1999 ◽  
Vol 604 ◽  
Author(s):  
Albert Sickinger ◽  
Joseph P. Teter

AbstractThe objective of this development program was to demonstrate the feasibility of producing superelastic NiTi shape-memory alloy (SMA) foil material by the low pressure plasma spraying (LPPS) process for the development of robust, corrosion resistant and long life sealing technology.A conventional LPPS facility was retooled for the use of electric wire arc spraying and the process parameters were reconfigured. Foil specimens sprayed up to 1.5mm thickness showed good ductility after consolidation heat treatment at 950'C for 1 hour. Subsequent rolling of the foil specimens to a thickness of 0.5mm exhibited superelastic behavior. The amount of superelasticity will have to be determined. In addition, thin (0.2 mm) and thick (0.76mm) wall tubes have been produced in the 12.5mm diameter range. These samples were heat treated and subjected to Hot Isostatic Pressing (HIP). Metallographic examination revealed dense, solid microstructures after heat treatment and rolling, and hot isostatic pressing respectively.It was concluded, that this development established the feasibility to produce near net shape superelastic NiTi foil with a retooled Low Pressure Wire Arc Spraying (LPWAS) process, modified to permit substitution of NiTi-wire for NiTi-powder as feed stock.


Sign in / Sign up

Export Citation Format

Share Document