Trends in point-of-care optical biosensors for antibiotics detection in aqueous media

2021 ◽  
pp. 131235
Author(s):  
Monika Nehra ◽  
Kanika ◽  
Neeraj Dilbaghi ◽  
Rajesh Kumar ◽  
Sandeep Kumar
Author(s):  
Xiaoya Peng ◽  
Dan Li ◽  
Yuanting Li ◽  
Haibo Xing ◽  
Wei Deng

Antibiotic contaminants in aqueous media pose serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly...


2021 ◽  
Vol 8 (3) ◽  
pp. 031313
Author(s):  
Aref Asghari ◽  
Chao Wang ◽  
Kyoung Min Yoo ◽  
Ali Rostamian ◽  
Xiaochuan Xu ◽  
...  

Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 209
Author(s):  
Yung-Tsan Chen ◽  
Ya-Chu Lee ◽  
Yao-Hsuan Lai ◽  
Jin-Chun Lim ◽  
Nien-Tsu Huang ◽  
...  

This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Aristeidis S. Tsagkaris ◽  
Jana Pulkrabova ◽  
Jana Hajslova

Pesticides have been extensively used in agriculture to protect crops and enhance their yields, indicating the need to monitor for their toxic residues in foodstuff. To achieve that, chromatographic methods coupled to mass spectrometry is the common analytical approach, combining low limits of detection, wide linear ranges, and high accuracy. However, these methods are also quite expensive, time-consuming, and require highly skilled personnel, indicating the need to seek for alternatives providing simple, low-cost, rapid, and on-site results. In this study, we critically review the available screening methods for pesticide residues on the basis of optical detection during the period 2016–2020. Optical biosensors are commonly miniaturized analytical platforms introducing the point-of-care (POC) era in the field. Various optical detection principles have been utilized, namely, colorimetry, fluorescence (FL), surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). Nanomaterials can significantly enhance optical detection performance and handheld platforms, for example, handheld SERS devices can revolutionize testing. The hyphenation of optical assays to smartphones is also underlined as it enables unprecedented features such as one-click results using smartphone apps or online result communication. All in all, despite being in an early stage facing several challenges, i.e., long sample preparation protocols or interphone variation results, such POC diagnostics pave a new road into the food safety field in which analysis cost will be reduced and a more intensive testing will be achieved.


2014 ◽  
Author(s):  
L. Coelho ◽  
R. B. Queirós ◽  
J. L. Santos ◽  
M. Cristina L. Martins ◽  
D. Viegas ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Daria Kohler ◽  
Gregor Schindler ◽  
Lothar Hahn ◽  
Johannes Milvich ◽  
Andreas Hofmann ◽  
...  

AbstractEarly and efficient disease diagnosis with low-cost point-of-care devices is gaining importance for personalized medicine and public health protection. Within this context, waveguide-(WG)-based optical biosensors on the silicon-nitride (Si3N4) platform represent a particularly promising option, offering highly sensitive detection of indicative biomarkers in multiplexed sensor arrays operated by light in the visible-wavelength range. However, while passive Si3N4-based photonic circuits lend themselves to highly scalable mass production, the integration of low-cost light sources remains a challenge. In this paper, we demonstrate optical biosensors that combine Si3N4 sensor circuits with hybrid on-chip organic lasers. These Si3N4-organic hybrid (SiNOH) lasers rely on a dye-doped cladding material that are deposited on top of a passive WG and that are optically pumped by an external light source. Fabrication of the devices is simple: The underlying Si3N4 WGs are structured in a single lithography step, and the organic gain medium is subsequently applied by dispensing, spin-coating, or ink-jet printing processes. A highly parallel read-out of the optical sensor signals is accomplished with a simple camera. In our proof-of-concept experiment, we demonstrate the viability of the approach by detecting different concentrations of fibrinogen in phosphate-buffered saline solutions with a sensor-length (L-)-related sensitivity of S/L = 0.16 rad nM−1 mm−1. To our knowledge, this is the first demonstration of an integrated optical circuit driven by a co-integrated low-cost organic light source. We expect that the versatility of the device concept, the simple operation principle, and the compatibility with cost-efficient mass production will make the concept a highly attractive option for applications in biophotonics and point-of-care diagnostics.


2020 ◽  
Vol 56 (27) ◽  
pp. 3851-3854 ◽  
Author(s):  
Xiaomin Chai ◽  
Hai-Hua Huang ◽  
Huiping Liu ◽  
Zhuofeng Ke ◽  
Wen-Wen Yong ◽  
...  

A Co-based complex displayed the highest photocatalytic performance for CO2 to CO conversion in aqueous media.


VASA ◽  
2011 ◽  
Vol 40 (6) ◽  
pp. 429-438 ◽  
Author(s):  
Berent ◽  
Sinzinger

Based upon various platelet function tests and the fact that patients experience vascular events despite taking acetylsalicylic acid (ASA or aspirin), it has been suggested that patients may become resistant to the action of this pharmacological compound. However, the term “aspirin resistance” was created almost two decades ago but is still not defined. Platelet function tests are not standardized, providing conflicting information and cut-off values are arbitrarily set. Intertest comparison reveals low agreement. Even point of care tests have been introduced before appropriate validation. Inflammation may activate platelets, co-medication(s) may interfere significantly with aspirin action on platelets. Platelet function and Cox-inhibition are only some of the effects of aspirin on haemostatic regulation. One single test is not reliable to identify an altered response. Therefore, it may be more appropriate to speak about “treatment failure” to aspirin therapy than using the term “aspirin resistance”. There is no evidence based justification from either the laboratory or the clinical point of view for platelet function testing in patients taking aspirin as well as from an economic standpoint. Until evidence based data from controlled studies will be available the term “aspirin resistance” should not be further used. A more robust monitoring of factors resulting in cardiovascular events such as inflammation is recommended.


Sign in / Sign up

Export Citation Format

Share Document