Study on interface reaction between multilayer graphene and TiAl alloy

2021 ◽  
pp. 131515
Author(s):  
Mingyu Wu ◽  
Guangbao Mi ◽  
Peijie Li ◽  
Xu Huang ◽  
Chunxiao Cao
2020 ◽  
Author(s):  
Vera Marinova ◽  
Stefan Petrov ◽  
Blagovest Napoleonov ◽  
Jordan Mickovski ◽  
Dimitrina Petrova ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Youngbin Tchoe ◽  
Janghyun Jo ◽  
HoSung Kim ◽  
Heehun Kim ◽  
Hyeonjun Baek ◽  
...  

AbstractWe report monolithic integration of indium arsenide (InAs) nanorods and zinc oxide (ZnO) nanotubes using a multilayer graphene film as a suspended substrate, and the fabrication of dual-wavelength photodetectors with the hybrid configuration of these materials. For the hybrid nanostructures, ZnO nanotubes and InAs nanorods were grown vertically on the top and bottom surfaces of the graphene films by metal-organic vapor-phase epitaxy and molecular beam epitaxy, respectively. The structural, optical, and electrical characteristics of the hybrid nanostructures were investigated using transmission electron microscopy, spectral photoresponse analysis, and current–voltage measurements. Furthermore, the hybrid nanostructures were used to fabricate dual-wavelength photodetectors sensitive to both ultraviolet and mid-infrared wavelengths.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Guo ◽  
Wanying Zhang ◽  
Yubing Si ◽  
Donghai Wang ◽  
Yongzhu Fu ◽  
...  

AbstractThe interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a bifunctional electrolyte additive, i.e., 1,3,5-benzenetrithiol (BTT), which is used to construct solid-electrolyte interfaces (SEIs) on both electrodes from in situ organothiol transformation. BTT reacts with lithium metal to form lithium 1,3,5-benzenetrithiolate depositing on the anode surface, enabling reversible lithium deposition/stripping. BTT also reacts with sulfur to form an oligomer/polymer SEI covering the cathode surface, reducing the dissolution and shuttling of lithium polysulfides. The Li–S cell with BTT delivers a specific discharge capacity of 1,239 mAh g−1 (based on sulfur), and high cycling stability of over 300 cycles at 1C rate. A Li–S pouch cell with BTT is also evaluated to prove the concept. This study constructs an ingenious interface reaction based on bond chemistry, aiming to solve the inherent problems of Li–S batteries.


2021 ◽  
pp. 111196
Author(s):  
Tian Shiwei ◽  
He Anrui ◽  
Liu Jianhua ◽  
Zhang Yefei ◽  
Yang Yonggang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document