Composite materials used in Scramjet- A Review

2018 ◽  
Vol 5 (1) ◽  
pp. 1321-1326 ◽  
Author(s):  
Gautam Choubey ◽  
Lakka Suneetha ◽  
K.M. Pandey
2015 ◽  
Vol 43 (9) ◽  
pp. 2901-2906
Author(s):  
Justin J. Likar ◽  
Robert E. Lombardi ◽  
Alexander L. Bogorad ◽  
Roman Herschitz

2018 ◽  
Author(s):  
Marcella Grosso ◽  
Sergio D. Soares ◽  
Isabel C. P. Maragarit-Mattos ◽  
Gabriela R. Pereira

2018 ◽  
Vol 1 (1) ◽  
pp. 834-842
Author(s):  
Murat Koru ◽  
Kenan Büyükkaya

The physical properties of the materials used are also important in the thermal conduction, besides many other factors. In this study, nettle fiber/polyester composites were formed using stinging nettle grown in the Black Sea region. The stinging nettle fibers used in the formation of these composites were divided into three parts as bottom, middle, and top. The physical properties (diameter, density, crystallinity) of the fibers obtained from different parts of the plant and how the increased fiber concentration affected the thermal conductivity coefficients of the composite materials formed were studied. As a result, it was observed that the thermal conductivity coefficients of the composites increased with the increase of the crystallinity ratio of the fiber. Moreover, the increased fiber concentration significantly increased the thermal conductivity coefficient of the composite materials produced.


2020 ◽  
Vol 869 ◽  
pp. 7-14
Author(s):  
Gia Viet Ngo

The article presents thermoplastic characteristics of polymer composite materials developed on domestic raw materials on a thermoplastic matrix-injection material of the VTP-7 brand based on polyaryl sulfones (polysulfone PSU) plastic and sheet material of the VKU-44 brand based on PSU and carbon unidirectional tape ELUR 0.08 PA. In the article, the author considered the modification method of thermoplastic polymers to impart functional properties and mechanisms of their action. It is shown that the developed materials have no analogues in the domestic industry. According to the level of physical and mechanical characteristics, fire-hazard properties and heat resistance, the developed polymer composite materials (PCM) fully meets the requirements for modern thermoplastic PCM, and is not inferior to foreign analogues.


2019 ◽  
Vol 279 ◽  
pp. 02010
Author(s):  
Lukáš Bosák ◽  
Milan Palko

Sustainability is currently an important part of the building industry. The development of new building constructions and the use of ecological materials is a very popular topic in this area. One example of organic material are natural fibres bio-composites. Bio-composite materials are currently used in the form of laminates mainly used in the sport and furniture industries. This article addresses their use in the building industry as the outer envelope of buildings. The article deals with the testing of the influence of UV radiation and moisture on the degradation of Bio-composites with recommendation of possible ways of their protection. In the next section, it deals with the design of composite wall panel with Bio-composite laminates on the top layer. This panel will contain mycelium as thermal insulation. The assumption of the use of this type of construction in the building industry is based on the possibility of replacing conventional materials used nowadays and reducing the environmental load by the building industry. The use of new types of eco-friendly building materials is in accordance with the EU strategy.


2014 ◽  
Vol 605 ◽  
pp. 303-305
Author(s):  
Jerome Rossignol ◽  
Alain Thionnet

In the field of the transport, the increase of the security rule recommends to a periodic control of the structure to detect damage due to mechanical loadings. Now, current materials, used in the case of transport applications, are the composite materials. The methods, to control these materials or composite structures, need to be low cost, non-destructive, in-situ and swiftness as far as possible. The scientific literature reports many methods to control the damage in composite materials and structures. However the above requirements and the adaptation to composite materials reduce the number of methods that can be used. Currently, the adapted methods are based on infrared thermography, acoustical emission, EMIR (ElectroMagnetic InfraRed) or microwave imagery. We present an innovative non-destructive method of detecting damages in composite materials. The method is based on the observation and analysis of the modification in dielectric material resulting from damage. The originality of this method is that the diagnostic is obtained by using a microstrip resonator at microwave frequencies. The feasibility of the method is demonstrated by the detection of a fibre break into an unidirectional composite submitted to a flexural loading. The fibre break is the damage to detect. The perspective of this work is to develop a quantification and a localization of damages.


Sign in / Sign up

Export Citation Format

Share Document