Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films

2019 ◽  
Vol 17 ◽  
pp. 2104-2110 ◽  
Author(s):  
N. Suaduang ◽  
S. Ross ◽  
G.M. Ross ◽  
S. Pratumshat ◽  
S. Mahasaranon
2019 ◽  
Vol 824 ◽  
pp. 87-93
Author(s):  
Nattawut Suaduang ◽  
Sukunya Ross ◽  
Gareth M. Ross ◽  
Supatra Pratumshat ◽  
Sararat Mahasaranon

The aim of this research was to prepare and characterize biocomposite films from poly(lactic acid) (PLA) with spent coffee grounds (SCG). PLA can be derived from renewable resources. The SCG component consists of cellulose, hemicellulose and coffee oil 10.98%. SCG can simultaneously act as plasticizer and filler in the composites that can enhance the mixing process. The PLA/SCG biocomposite films were processed by a twin-screw extruder and blow film extruder. They were prepared by using various SCG concentrations (0%, 5%, 7.5% and 10% of SCG). The Scanning Electron Microscopy (SEM) results showed that the PLA matrix with SCG was miscible and had the SCG was well good distributed. Elongation at break was increased, when the amount of SCG was increased, with the results of PLA and PLA/SCG 10% being 5.07% and 6.63% respectively, while hardness, brittleness and tensile strength decreased. UV-vis spectrophotometric measurement of PLA/SCG biocomposite films showed a considerable reduction in transmission of all UV wavelengths (UV-A, -B and -C) and visible light with increasing SCG content. Hence, in this research, SCG can be used as filler in PLA films in order to produce biodegradable films and developed as agricultural film products. The PLA/SCG biocomposite films have shown good properties and are environmentally friendly.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2621 ◽  
Author(s):  
Hai Chi ◽  
Wenhui Li ◽  
Chunli Fan ◽  
Cheng Zhang ◽  
Lin Li ◽  
...  

The microstructure, thermal properties, mechanical properties and oxygen and water vapor barrier properties of a poly(lactic acid) (PLA)/nano-TiO2 composite film before and after high pressure treatment were studied. Structural analysis showed that the functional group structure of the high pressure treated composite film did not change. It was found that the high pressure treatment did not form new chemical bonds between the nanoparticles and the PLA. The micro-section of the composite film after high pressure treatment became very rough, and the structure was depressed. Through the analysis of thermal and mechanical properties, high pressure treatment can not only increase the strength and stiffness of the composite film, but also increase the crystallinity of the composite film. Through the analysis of barrier properties, it is found that the barrier properties of composite films after high pressure treatment were been improved by the applied high pressure treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


2018 ◽  
Vol 917 ◽  
pp. 37-41 ◽  
Author(s):  
Muhammad Khusairy bin Bakri ◽  
Elammaran Jayamani ◽  
Soon Kok Heng ◽  
Akshay Kakar

In this short review paper, the physical and mechanical properties of acacia wood, poly lactic acid (PLA) and polyhydroxyalkanoates (PHA) were analyzed. Existing factors that affect the mechanical properties of natural fiber composites were investigated and identified. By knowing these factors, a possibility and potentiality in implementing the natural acacia wood reinforced material with hybrid polymer were discussed. It was found that the acacia wood had the potential to re-condition soil and have the potential to become reinforced materials in hybrid polymer composites. In addition, using fully biodegradable polymer such as PLA and PHA made it sustainable and environmentally friendly.


2013 ◽  
Vol 34 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Vijay Baheti ◽  
Jiri Militky ◽  
Miroslava Marsalkova

2018 ◽  
Vol 40 (6) ◽  
pp. 2132-2141 ◽  
Author(s):  
M.E. González‐López ◽  
A.A. Pérez‐Fonseca ◽  
R. Manríquez‐González ◽  
M. Arellano ◽  
D. Rodrigue ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 578
Author(s):  
Carolina Caicedo ◽  
Heidy Lorena Calambás Pulgarin

In this work, we present a functionalization strategy of starch-poly(lactic acid) (PLA) blends with organic acids. Lactic and acetic acid were used as acid agents, and oleic acid was also included in the previous acids, with the aim of finding a synergy that thermodynamically benefits the products and provides hydrophobicity. The ratio of starch and sorbitol was 70:30, and the added acid agent replaced 6% of the plasticizer; meanwhile, the thermoplastic starch (TPS)–PLA blend proportion was 70:30 considering the modified TPS. The mixtures were obtained in a torque rheometer at 50 rpm for 10 min at 150 °C. The organic acids facilitated interactions between TPS and PLA. Although TPS and PLA are not miscible, PLA uniformly dispersed into the starch matrix. Furthermore, a reduction in the surface polarity was achieved, which enabled the wettability to reach values close to those of neat PLA (TPS–L-PLA increased by 55% compared to TPS–PLA). The rheological results showed a modulus similar to that of TPS. In general, there were transitions from elastic to viscous, in which the viscous phase predominated. The first and second-order thermal transitions did not show significant changes. The structural affinity of lactic acid with biopolymers (TPS–L-PLA) allowed a greater interaction and was corroborated with the mechanical properties, resulting in a greater resistance with respect to pure TPS and blended TPS–PLA (28.9%). These results are particularly relevant for the packaging industry.


Sign in / Sign up

Export Citation Format

Share Document