Optimization of surface roughness and Kerf width by wire cut-electrical discharge machining on Inconel 625

2020 ◽  
Vol 27 ◽  
pp. 1460-1465
Author(s):  
Anoop Kumar ◽  
U. Ashok Kumar ◽  
P. Laxminarayana
Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


2014 ◽  
Vol 592-594 ◽  
pp. 416-420 ◽  
Author(s):  
Singaravelu D. Lenin ◽  
A. Uthirapathi ◽  
Ramana Reddy P.S. Venkata ◽  
Muthukannan Durai Selvam

The present paper describes the influence of pulse-on-time on performance features such as Metal Removal Rate (MRR), Kerf width, Surface Roughness (SR) on cutting Titanium alloy (Ti-6Al-4V) in wire electrical discharge machining (WEDM) using zinc coated brass wire. The deionised water is used as dielectric fluid. The process parameters such as wire tension, wire speed, flushing pressure, discharge current, sparking voltage and pulse off time have kept constant at appropriate values throughout the experiment and the pulse on time is varied at nine different intervals. It was found that pulse-on-time is the most significant factor which greatly influences MRR, kerf width, and SR. It was also observed that taper at the end of cutting zone which is unavoidable occurrence for the machined part. This is due to the erosion of wire material. The surface roughness increases with increase in pulse on time also with higher rate of MRR.


Author(s):  
Gangadharudu Talla ◽  
Soumya Gangopadhyay ◽  
CK Biswas

In recent times, nickel-based super alloys are widely utilized in aviation, processing, and marine industries owing to their supreme ability to retain the mechanical properties at elevated temperature in combination with remarkable resistance to corrosion. Some of the properties of these alloys such as low thermal conductivity, strain hardening tendency, chemical affinity, and presence of hard and abrasives phases in the microstructure render these materials very difficult-to-cut using conventional machining processes. In this work, an experimental setup was developed and integrated with the existing electrical discharge machining system for carrying out powder-mixed electrical discharge machining process for Inconel 625. The experiments were planned and conducted by varying five different variables, that is, powder concentration, peak current, pulse-on time, duty cycle, and gap voltage based on the central composite design of response surface methodology. Effects of these parameters along with powder concentration were investigated on various surface integrity aspects including surface morphology, surface roughness, surface microhardness, change in the composition of the machined surface, and residual stress. Results clearly indicated that addition of powder to dielectric has significantly improved surface integrity compared to pure dielectric. Among the powders used, silicon has resulted in highest microhardness, that is, almost 14% more than graphite. Lowest surface roughness (approximately 50% less than pure kerosene) and least residual stress were obtained using silicon powder (approximately 8% less than graphite-mixed dielectric). Relative content of nickel was reduced at the expense of Nb and Mo after addition of powders like aluminum and graphite in dielectric during electrical discharge machining.


2012 ◽  
Vol 576 ◽  
pp. 552-555 ◽  
Author(s):  
M. Durairaj ◽  
S. Gowri ◽  
M.H. Gauthamkumar ◽  
M. Ashok Kumar ◽  
R. Aishwarya

Wire Electrical Discharge Machining is one of the important non-traditional machining processes, which is used for machining difficult to machine materials and intricate profiles. In this present study, machining is done using Wire-Cut EDM and experimentation is planned according to Taguchi’s design of experiments [2]. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, and pulse OFF time and Wire feed. Inconel 800 was selected as a work material and Brass wire of 0.25mm diameter as the tool to conduct the experiments. From experimental results, the surface roughness and Kerf Width was determined for each machining performance criteria. Grey Relational Analysis [1] is used for optimization of Surface Roughness and Kerf width.


2020 ◽  
Vol 10 (1) ◽  
pp. 401-407
Author(s):  
Yanuar Rohmat Aji Pradana ◽  
Aldi Ferara ◽  
Aminnudin Aminnudin ◽  
Wahono Wahono ◽  
Jason Shian-Ching Jang

AbstractThe machinability information of Zr-based bulk metallic glasses (BMGs) are recently limited but essential to provide technological recommendation for the fabrication of the medical devices due to the material’s metastable nature. This study aims to investigate the material removal rate (MRR) and surface roughness under different current and pulse-on time of newly developed Ni- and Cu-free Zr-based BMG using sinking-electrical discharge machining (EDM). By using weightloss calculation, surface roughness test and scanning electron microscopy (SEM) observation on the workpiece after machining, both MRR and surface roughness were obtained to be increased up to 0.594 mm3/min and 5.50 μm, respectively, when the higher current was applied. On the other hand, the longer pulse-on time shifted the Ra into the higher value but lower the MRR value to only 0.183 mm3/min at 150 μs. Contrary, the surface hardness value was enhanced by both higher current and pulse-on time applied during machining indicating different level of structural change after high-temperature spark exposure on the BMG surface. These phenomena are strongly related to the surface evaporation which characterize the formation of crater and recast layer in various thicknesses and morphologies as well as the crystallization under the different discharge energy and exposure time.


2012 ◽  
Vol 576 ◽  
pp. 527-530
Author(s):  
Mohammad Yeakub Ali ◽  
W.Y.H. Liew ◽  
S.A. Gure ◽  
B. Asfana

This paper presents the estimation of kerf width in micro wire electrical discharge machining (micro WEDM) in terms of machining parameters of capacitance and gap voltage. An empirical model is developed by the analysis of variance (ANOVA) of experimental data. Using a wire electrode of 70 µm diameter, a minimum kerf width is found to be 92 µm for the micro WEDM parameters of 0.01 µF capacitance and 90.25 V gap voltage. Around 30% increament of the kerf is found to be high. The analysis also revealed that the capacitance is more influential parameter than gap voltage on kerf width produced by micro WEDM. As the gap voltage determines the breakdown distance and affects the wire vibration, the wire vibration factor is to be considered in the analysis and in formulation of model in future study.


Sign in / Sign up

Export Citation Format

Share Document