An evaluation study on amalgamation and performance of fiber reinforced concrete frames with infills and without infills

Author(s):  
N. Sivakumar ◽  
G. Beulah Gnana Ananthi ◽  
M.S. Deepak
2004 ◽  
Vol 130 (3) ◽  
pp. 520-528 ◽  
Author(s):  
Carin L. Roberts-Wollmann ◽  
Marcela Guirola ◽  
W. Samuel Easterling

Author(s):  
Ravendran Arunothayan ◽  
Behzad Nematollahi ◽  
Ravi Ranade ◽  
Shin Hau Bong ◽  
Jay Sanjayan

This paper presents the systematic development and performance characterization of a non-proprietary 3D-printable ultra-high-performance fiber-reinforced concrete (UHPFRC) for digital construction. Several fresh and hardened properties of the developed 3D-printable UHPFRC matrix (without fiber) and composite (with 2% volume fraction of steel fibers) were evaluated and compared to that of conventionally mold-cast UHPFRC. Additionally, the effects of testing direction on the compressive and flexural strengths of the printed UHPFRC were investigated. The fresh properties of the UHPFRC developed in this study satisfied the criteria for extrudability, buildability, and shape-retention-ability, which are relevant for ensuring printability. The printed UHPFRC exhibited superior flexural performance to the mold-cast UHPFRC due to alignment of the short fibers in the printing direction. The high compressive and flexural strengths, along with the deflection-hardening behavior, of the developed UHPFRC can enable the production of thin 3D-printed components with significant reduction or complete elimination of conventional steel bars.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


PCI Journal ◽  
2012 ◽  
Vol 57 (3) ◽  
pp. 33-46 ◽  
Author(s):  
Nemkumar Banthia ◽  
Vivek Bindiganavile ◽  
John Jones ◽  
Jeff Novak

Sign in / Sign up

Export Citation Format

Share Document