scholarly journals ML Methods for Crop Yield Prediction and Estimation: An Exploration

Machine learning Has performed a essential position within the estimation of crop yield for both farmers and consumers of the products. Machine learning techniques learn from data set related to the environment on which the estimations and estimation are to be made and the outcome of the learning process are used by farmers for corrective measures for yield optimization. This paper we explore various ML techniques utilized in crop yield estimation and provide the detailed analysis of accuracy of the techniques.

Agriculture is the primary research study area in India as agriculture is the main source of income for various communities. In classification algorithm for agricultural dataset according to production, area, crop and seasons. Here, four classification algorithms are used with the help of WEKA tool. These algorithms are namely the present scenario, there is a call to renovate the enormous agriculture data into diverse technologies and make them accessible to the farmer for improved decision making. The endeavor of this work is to find out the finest Random Tree, J48, Bayes Net and KStar etc. The captured results revealed that Random tree algorithm performed well in terms of error rate and provides slightly better performance than KStar, Bayes Net and J48 classifiers. In this paper, our objective is to apply machine learning techniques to mine constructive information from the agricultural dataset to improve the crop yield prediction for major crops in Nashik district of Maharashtra.


Author(s):  
Ashwini I. Patil ◽  
Ramesh A. Medar ◽  
Vinod Desai

Today Indian economy depends upon agriculture. More than 70% of the people in India have taken it as a main occupation, day by day for a particular crop; the formers are not getting proper yield as well as profit due to environmental conditions like soil quality, weather, heavy rainfall, drought, seed damages, fertilizers, pesticides. The farmers not able to produce high production, so taking the historical agricultural data records we can predict the crop yield using machine learning techniques like Linear regression, comparative analysis are done with decision tree, KNN algorithms, using these to achieve the high accuracy and model performance is computed.


2020 ◽  
Vol 64 (02) ◽  
pp. 394-398
Author(s):  
Vaishali Pandith ◽  
Haneet Kour ◽  
Surjeet Singh ◽  
Jatinder Manhas ◽  
Vinod Sharma

Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


2021 ◽  
pp. 155005942110608
Author(s):  
Jakša Vukojević ◽  
Damir Mulc ◽  
Ivana Kinder ◽  
Eda Jovičić ◽  
Krešimir Friganović ◽  
...  

In everyday clinical practice, there is an ongoing debate about the nature of major depressive disorder (MDD) in patients with borderline personality disorder (BPD). The underlying research does not give us a clear distinction between those 2 entities, although depression is among the most frequent comorbid diagnosis in borderline personality patients. The notion that depression can be a distinct disorder but also a symptom in other psychopathologies led our team to try and delineate those 2 entities using 146 EEG recordings and machine learning. The utilized algorithms, developed solely for this purpose, could not differentiate those 2 entities, meaning that patients suffering from MDD did not have significantly different EEG in terms of patients diagnosed with MDD and BPD respecting the given data and methods used. By increasing the data set and the spatiotemporal specificity, one could have a more sensitive diagnostic approach when using EEG recordings. To our knowledge, this is the first study that used EEG recordings and advanced machine learning techniques and further confirmed the close interrelationship between those 2 entities.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2021 ◽  
Author(s):  
Rogini Runghen ◽  
Daniel B Stouffer ◽  
Giulio Valentino Dalla Riva

Collecting network interaction data is difficult. Non-exhaustive sampling and complex hidden processes often result in an incomplete data set. Thus, identifying potentially present but unobserved interactions is crucial both in understanding the structure of large scale data, and in predicting how previously unseen elements will interact. Recent studies in network analysis have shown that accounting for metadata (such as node attributes) can improve both our understanding of how nodes interact with one another, and the accuracy of link prediction. However, the dimension of the object we need to learn to predict interactions in a network grows quickly with the number of nodes. Therefore, it becomes computationally and conceptually challenging for large networks. Here, we present a new predictive procedure combining a graph embedding method with machine learning techniques to predict interactions on the base of nodes' metadata. Graph embedding methods project the nodes of a network onto a---low dimensional---latent feature space. The position of the nodes in the latent feature space can then be used to predict interactions between nodes. Learning a mapping of the nodes' metadata to their position in a latent feature space corresponds to a classic---and low dimensional---machine learning problem. In our current study we used the Random Dot Product Graph model to estimate the embedding of an observed network, and we tested different neural networks architectures to predict the position of nodes in the latent feature space. Flexible machine learning techniques to map the nodes onto their latent positions allow to account for multivariate and possibly complex nodes' metadata. To illustrate the utility of the proposed procedure, we apply it to a large dataset of tourist visits to destinations across New Zealand. We found that our procedure accurately predicts interactions for both existing nodes and nodes newly added to the network, while being computationally feasible even for very large networks. Overall, our study highlights that by exploiting the properties of a well understood statistical model for complex networks and combining it with standard machine learning techniques, we can simplify the link prediction problem when incorporating multivariate node metadata. Our procedure can be immediately applied to different types of networks, and to a wide variety of data from different systems. As such, both from a network science and data science perspective, our work offers a flexible and generalisable procedure for link prediction.


Sign in / Sign up

Export Citation Format

Share Document