Effect of micro tool-tips in electrochemical micromachining

Author(s):  
Abhinav Kumar ◽  
Manjesh Kumar ◽  
HNS Yadav ◽  
Manas Das
Author(s):  
Hariharan Perianna Pillai ◽  
Shamli Chinnakulanthai Sampath ◽  
Rajkeerthi Elumalai ◽  
Shruthilaya Hariharan ◽  
Yuvaraj Natarajan

Electrochemical micromachining process is one among the successful micromachining technique, which uses the electrochemical energy and is recognized for machining difficult-to-cut materials. One such material is Nimonic 75 alloy, which is used to make gas turbine components. In this study, an effort has been made to machine micro-hole profiles in Nimonic 75 with a thickness of 500 μm using two different electrolytes. A combination of sodium bromide, hydrofluoric acid and ethylene glycol has been chosen as the first electrolyte, while the second is a combination of sodium chloride and sodium nitrate. Solid tungsten carbide of diameter 500 μm is used as the tool in each case. For layout of experiments, Taguchi orthogonal array was chosen with following input parameters namely voltage, micro-tool feed rate and duty cycle. Performance characteristics such as material removal rate, overcut and conicity have been assessed for each electrolyte. Experimental results have shown that the first electrolyte yields lower values of overcut (OC) and conicity, whereas the second electrolyte gives higher material removal rate (MRR). Further, the optimal combinations of process parameters have been found by implementing the TOPSIS procedure and the results were found to be in good agreement with the experimental outcomes.


Author(s):  
T Geethapriyan ◽  
K Kalaichelvan ◽  
T Muthuramalingam ◽  
A Rajadurai

Due to inherent properties of Ti-6Al-4V alloy, it is being used in the application of fuel injector nozzle for diesel engine, aerospace and marine industries. Since the electrochemical micromachining process involves the no heat-affected zone, no tool wear, stress- and burr-free process compared to other micromachining processes, it is widely used in the manufacturing field to fabricate complex shape and die. Hence, it is highly important to compute the optimum input parameters for enhancing the machining characteristics in such machining process. In this study, an attempt has been made to find the influence of the process parameters and optimize the parameters on machining α–β titanium alloy using Taguchi-grey relational analysis. Since applied voltage, micro-tool feed rate, electrolyte concentration and duty cycle have vital role in the process, these parameters have been chosen as the input parameters to evaluate the performance measures such as material removal rate, surface roughness and overcut in this study. From the experimental results, it has been found that micro-tool feed rate has more influence due to its importance in maintaining inter electrode gap to avoid micro-spark generation. It has also been found that lower electrolyte concentration with lower duty cycle produces lower surface roughness with better circularity on machining α–β titanium alloy. The optimum combination has been found using Taguchi-grey relational analysis and verified from confirmation test. It has also been inferred that the multi-response characteristics such as material removal rate, surface roughness and overcut can be effectively improved through the grey relational analysis.


Author(s):  
Mukesh Tak ◽  
Rakesh Mote

Abstract Titanium and its alloys are considered as difficult to cut material classes, and their processing through the traditional machining methods is a painful task. These materials have an outstanding combination of properties like high specific strength, excellent corrosive resistance, and exceptional bio-compatibility; therefore, they have broad fields of application like aerospace, MEMS, bio-medical, etc. Electrochemical micromachining (ECMM) is a very vital process for the production of micro-domain features in difficult-to-machine materials. The machining issue with ECMM for titanium and their alloys is the passive layer formation, which hinders the dissolution and causes stray removal. To overcome these issues, a hybrid ECMM approach has been proposed by using a diamond abrasive tool combined with ECMM. The present study focuses on the detailed characterization of the passive layer formed using the hybrid approach. Through the use abrasive tool, the abrasive grits scoop the passive layer by the mechanical grinding action, formed in micro-drilling on the Ti6Al4V alloy to expose a new surface for further dissolution. The micro-holes were produced incorporating the abrasive tool and then compared by the holes created using a cylindrical tool (tool without abrasive). The taper and the stray dissolution of the micro-holes were also compared, produced at different applied potentials. The minimum average entry overcut and exit overcut of the hole were obtained as 29 µm and 3 µm, respectively, also a micro-hole with the lowest taper of 2.7°, achieved by the use of the abrasive micro tool.


2007 ◽  
Vol 339 ◽  
pp. 302-306
Author(s):  
Zhong Ning Guo ◽  
F.Z. Zeng ◽  
G.H. Han ◽  
Zhi Gang Huang

A new method for on-line fabrication of micro tool-electrodes is presented in this paper. The method is base on the machining mechanism of electrochemical micromachining. By exchanging the polarities of the tool-electrodes and workpiece repeatedly, micro tool-electrode appropriate for electrochemical micromachining can be obtained through mutual machining. Because the processes are carried out on-line, the position error and clamp error caused by twice-clamp of tool-electrodes can be avoided, and the machining precision can be improved greatly. This method will be very important to electrochemical generating micromachining. Experiments are carried out, and a tool-electrode with the pinpoint of 20μm can be machined stably.


2021 ◽  
pp. 251659842110316
Author(s):  
Abhinav Kumar ◽  
H. N. S. Yadav ◽  
Manjesh Kumar ◽  
Manas Das

Electrochemical micromachining (EMM) uses anodic dissolution in the range of microns to remove material. Complex shapes that are difficult to machine on hard materials can be fabricated easily with the help of EMM without any stresses on the workpiece surface and no tool wear. Fabrication of microfeatures on microdevices is a critical issue in modern technologies. For the fabrication of microfeatures, precise micro-tools have to be fabricated. In this present study, EMM milling is used for the fabrication of micro-tools. For this, an EMM setup has been designed. Tungsten carbide tools with an initial diameter of 520 µm have been selected and are electrochemically machined to reduce their diameter. The tool and workpiece are connected as anode and cathode, respectively. The electrolyte solution used for this investigation is sodium nitrate. A comparative analysis of the effect of tool rotation over both machining accuracy and surface finish has been performed.


2011 ◽  
Vol 19 (4) ◽  
pp. 437-444 ◽  
Author(s):  
Jakub Adam Koza ◽  
Ralph Sueptitz ◽  
Margitta Uhlemann ◽  
Ludwig Schultz ◽  
Annett Gebert

2006 ◽  
Vol 315-316 ◽  
pp. 731-735
Author(s):  
Xiao Hai Li ◽  
Zhen Long Wang ◽  
Wan Sheng Zhao

Electrochemical machining (ECM) has been rarely applied in micromachining because the electric field is not localized. In order to explore the feasibility of applying ECM to micromachining at micro to meso-scale, an experimental setup with precision control over electrochemical micromachining (EMM) was developed, which is in fact a multifunctional machine tool. The micro tool electrodes for EMM can also be fabricated by micro electrical discharge machining (EDM) on the same machine tool. A high-frequency short-pulse micro-energy MOSFET power supply was designed. Lower machining voltage and lower concentration of passivity electrolyte are utilized together to localize dissolution area in EMM. A micro hole 45 ,m in diameter was drilled by EMM on stainless steel foil with 100 μm thickness. A new approach of fabricating microstructures by means of EMM milling using a simple micro tool electrode is proposed, and a shaped hole and a micro cantilever beam with high precision were acquired by EMM milling. The satisfactory process results indicate the potential capability of EMM for higher machining accuracy and smaller machining size.


2021 ◽  
Vol 132 ◽  
pp. 107155
Author(s):  
Hang Yusen ◽  
Yang Tao ◽  
Xu Zhengyang ◽  
Zeng Yongbin

Sign in / Sign up

Export Citation Format

Share Document