Effect of trace elements on machining characteristics of C45 steel using coated carbide tool inserts

Author(s):  
Puneeth Kumar N. ◽  
Srikantappa A.S.
2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2017 ◽  
Vol 65 (4) ◽  
pp. 553-559 ◽  
Author(s):  
D. Rajeev ◽  
D. Dinakaran ◽  
S.C.E. Singh

AbstractNowadays, finishing operation in hardened steel parts which have wide industrial applications is done by hard turning. Cubic boron nitride (CBN) inserts, which are expensive, are used for hard turning. The cheaper coated carbide tool is seen as a substitute for CBN inserts in the hardness range (45–55 HRC). However, tool wear in a coated carbide tool during hard turning is a significant factor that influences the tolerance of machined surface. An online tool wear estimation system is essential for maintaining the surface quality and minimizing the manufacturing cost. In this investigation, the cutting tool wear estimation using artificial neural network (ANN) is proposed. AISI4140 steel hardened to 47 HRC is used as a work piece and a coated carbide tool is the cutting tool. Experimentation is based on full factorial design (FFD) as per design of experiments. The variations in cutting forces and vibrations are measured during the experimentation. Based on the process parameters and measured parameters an ANN-based tool wear estimator is developed. The wear outputs from the ANN model are then tested. It was observed that as the model using ANN provided quite satisfactory results, and that it can be used for online tool wear estimation.


2019 ◽  
Vol 72 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Shalina Sheik Muhamad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Hafizal Yazid

Purpose The purpose of this study is to investigate wear mechanisms of a multi-layered TiAlN/AlCrN-coated carbide tool during the milling of AISI 4340 steel under cryogenic machining. Design/methodology/approach The wear progression was measured using a toolmaker microscope and an optical microscope. Later, a field emission scanning electron microscope and energy-dispersive X-ray analysis were used to investigate the wear mechanisms in detail. Findings A comprehensive analysis revealed that the main causes of tool wear mechanisms were abrasion and adhesion wear on the flank face. Originality/value The investigations presented in this paper may be used by the machining industry to prolong the tool life at higher cutting speed by the application of liquid nitrogen.


2018 ◽  
Vol 15 ◽  
pp. 1278-1283 ◽  
Author(s):  
Masato Okada ◽  
Shin Terada ◽  
Takuya Miura ◽  
Yoshiro Iwai ◽  
Takuya Takazawa ◽  
...  

Measurement ◽  
2012 ◽  
Vol 45 (7) ◽  
pp. 1872-1884 ◽  
Author(s):  
R. Suresh ◽  
S. Basavarajappa ◽  
G.L. Samuel

Sign in / Sign up

Export Citation Format

Share Document