scholarly journals Association of age at benign hysterectomy with leukocyte telomere length in a nationally representative population

Maturitas ◽  
2022 ◽  
Author(s):  
Sheng Wan ◽  
Xiaobo Zhao ◽  
Jindan Pei ◽  
Zhimin Han ◽  
Ronghua Che ◽  
...  
Menopause ◽  
2020 ◽  
Vol 27 (11) ◽  
pp. 1242-1250
Author(s):  
Chase D. Latour ◽  
Kelli O’Connell ◽  
Megan E. Romano ◽  
Elizabeth D. Kantor ◽  
Mengmeng Du

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Buyun Liu ◽  
Yangbo Sun ◽  
Guifeng Xu ◽  
Shuang Rong ◽  
Wei Bao

Abstract Objectives DNA damage induced by oxidative stress is implicated in accelerated telomere shortening, a biomarker of biological aging. Although selenium has antioxidant properties, its impact on telomere length is largely unknown. This study aimed to examine the association between dietary selenium intake and leukocyte telomere length in a nationally representative sample of US adults. Methods We included 7409 adults aged 20 years or older who participated in the National Health and Nutrition Examination Survey (NHANES) 1999–2002. Dietary selenium intake was calculated using data collected in the 24-hour dietary recall. Leukocyte telomere length was assayed using the quantitative polymerase chain reaction method. The association between selenium intake and telomere length was estimated by weighted linear regression models adjusting for demographic, socioeconomic and lifestyle factors, body mass index, supplements intake, and leukocyte cell type composition. Results The average dietary selenium intake was 109.1 mg/d (standard error [SE] 1.15). We didn't find a significant association between dietary selenium intake and telomere length in US adults. The average telomere length (SE) was 1.01 (0.02), 1.01 (0.01), and 1.04 (0.01) across increasing tertiles of dietary selenium intake. However, a significant interaction was observed for age (P = 0.02). Among individuals aged 20–44 years, the β coefficient of log-transformed telomere length, compared to lowest tertile of dietary selenium intake, was −0.041 (SE 0.012, P = 0.002) and −0.033 (SE 0.018, P = 0.07) for middle tertile and the highest tertile of selenium intake, respectively. The corresponding β coefficient was 0.009 (SE 0.016, P = 0.59) and −0.001 (SE 0.012, P = 0.95), respectively, for adults 45–64 years old, and 0.017 (SE 0.015, P = 0.28) and 0.059 (SE 0.021, P = 0.01), respectively, for those aged 65 years or older. The results were not appreciably changed even after additionally adjustment for dietary intake of vitamin A, vitamin E, and zinc. Conclusions The association between dietary selenium intake and telomere length differed significantly by age groups, indicating that higher selenium intake may prevent telomere shortening in older adults but not in younger or middle-aged adults. Further studies about the underlying mechanisms are warranted. Funding Sources NA.


2021 ◽  
Author(s):  
Resham L Gurung ◽  
Rajkumar Dorajoo ◽  
Yiamunaa M ◽  
Ling Wang ◽  
Sylvia Liu ◽  
...  

Abstract Background Chronic kidney disease (CKD) is common among type 2 diabetes (T2D) and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length is associated with CKD in patients with T2D. We previously reported single nucleotide polymorphisms (SNPs) associated with leukocyte telomere length in Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using Mendelian randomization (MR) approach. Methods The cross-sectional association of 16 leukocyte telomere length SNPs with CKD, defined as an estimated glomerular filtration rate of less than 60 ml/min/1.73m2 was assessed among 4,768 (1,628 cases, 3,140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analysed. Results Genetically determined shorter leukocyte telomere length was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51 [95% confidence interval, 1.12 - 2.12; P = 0.007; Phet= 0.547]). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy (β  =  0.010, P = 0.751). Conclusions Our findings suggest that genetically determined leukocyte telomere length is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.


Author(s):  
Fernanda Gutierrez-Rodrigues ◽  
Raquel M. Alves-Paiva ◽  
Natália F. Scatena ◽  
Edson Z. Martinez ◽  
Priscila S. Scheucher ◽  
...  

2020 ◽  
Vol 14 (11) ◽  
pp. 933-941
Author(s):  
Ying Sun ◽  
Wei Wang ◽  
Yue-Ru Jiao ◽  
Jian Ren ◽  
Lei Gao ◽  
...  

Aim: This study aimed to explore the prognostic value of leukocyte telomere length (LTL) in patients with coronary artery disease (CAD). Materials & methods: We enrolled 366 CAD patients and 76 healthy subjects in this study. LTL was measured. All subjects were followed up for 6 months for further analysis regarding major adverse cardiac events (MACEs). Results: CAD patients had a significantly shortened LTL compared with healthy subjects (p < 0.05). The area under the curve for LTL prediction of MACEs was 0.769 (p < 0.001), with a shorter LTL being an independent predictor of MACEs (Cox proportional hazards regression, hazard ratio: 2.866; p < 0.001). Conclusion: LTL could be considered as an independent predictor of short-term MACEs in CAD.


Sign in / Sign up

Export Citation Format

Share Document