Anterior-posterior patterning of Drosophila wing discs I: A baseline mathematical model

2019 ◽  
Vol 314 ◽  
pp. 13-27
Author(s):  
Zhan Chen ◽  
Yuting Zou
Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3359-3369 ◽  
Author(s):  
T. Tabata ◽  
C. Schwartz ◽  
E. Gustavson ◽  
Z. Ali ◽  
T.B. Kornberg

Anterior/posterior compartment borders bisect every Drosophila imaginal disc, and the engrailed gene is essential for their function. We analyzed the role of the engrailed and invected genes in wing discs by eliminating or increasing their activity. Removing engrailed/invected from posterior wing cells created two new compartments: an anterior compartment consisting of mutant cells and a posterior compartment that grew from neighboring cells. In some cases, these compartments formed a complete new wing. Increasing engrailed activity also affected patterning. These findings demonstrate that engrailed both directs the posterior compartment pathway and creates the compartment border. These findings also establish the compartment border as the pre-eminent organizational feature of disc growth and patterning.


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


2016 ◽  
Vol 113 (45) ◽  
pp. E6993-E7002 ◽  
Author(s):  
Anupama Hemalatha ◽  
Chaitra Prabhakara ◽  
Satyajit Mayor

Endocytosis of ligand-receptor complexes regulates signal transduction during development. In particular, clathrin and dynamin-dependent endocytosis has been well studied in the context of patterning of the Drosophila wing disc, wherein apically secreted Wingless (Wg) encounters its receptor, DFrizzled2 (DFz2), resulting in a distinctive dorso-ventral pattern of signaling outputs. Here, we directly track the endocytosis of Wg and DFz2 in the wing disc and demonstrate that Wg is endocytosed from the apical surface devoid of DFz2 via a dynamin-independent CLIC/GEEC pathway, regulated by Arf1, Garz, and class I PI3K. Subsequently, Wg containing CLIC/GEEC endosomes fuse with DFz2-containing vesicles derived from the clathrin and dynamin-dependent endocytic pathway, which results in a low pH-dependent transfer of Wg to DFz2 within the merged and acidified endosome to initiate Wg signaling. The employment of two distinct endocytic pathways exemplifies a mechanism wherein cells in tissues leverage multiple endocytic pathways to spatially regulate signaling.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 589-599 ◽  
Author(s):  
M. Ng ◽  
F.J. Diaz-Benjumea ◽  
S.M. Cohen

The nubbin gene is required for normal growth and patterning of the wing in Drosophila. We report here that nubbin encodes a member of the POU family of transcription factors. Regulatory mutants which selectively remove nubbin expression from wing imaginal discs lead to loss of wing structures. Although nubbin is expressed throughout the wing primordium, analysis of genetic mosaics suggests a localized requirement for nubbin activity in the wing hinge. These observations suggest the existence of a novel proximal-distal growth control center in the wing hinge, which is required in addition to the well characterized anterior-posterior and dorsal-ventral compartment boundary organizing centers.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Katerina Nestoras ◽  
Helena Lee ◽  
Jym Mohler

We have undertaken a genetic analysis of new strong alleles of knot (kn). The original kn1 mutation causes an alteration of wing patterning similar to that associated with mutations of fused (fu), an apparent fusion of veins 3 and 4 in the wing. However, unlike fu, strong kn mutations do not affect embryonic segmentation and indicate that kn is not a component of a general Hh (Hedgehog)-signaling pathway. Instead we find that kn has a specific role in those cells of the wing imaginal disc that are subject to ptc-mediated Hh-signaling. Our results suggest a model for patterning the medial portion of the Drosophila wing, whereby the separation of veins 3 and 4 is maintained by kn activation in the intervening region in response to Hh-signaling across the adjacent anterior-posterior compartment boundary.


2007 ◽  
Vol 178 (3) ◽  
pp. 465-476 ◽  
Author(s):  
Insa Geffers ◽  
Katrin Serth ◽  
Gavin Chapman ◽  
Robert Jaekel ◽  
Karin Schuster-Gossler ◽  
...  

The Notch ligands Dll1 and Dll3 are coexpressed in the presomitic mesoderm of mouse embryos. Despite their coexpression, mutations in Dll1 and Dll3 cause strikingly different defects. To determine if there is any functional equivalence, we replaced Dll1 with Dll3 in mice. Dll3 does not compensate for Dll1; DLL1 activates Notch in Drosophila wing discs, but DLL3 does not. We do not observe evidence for antagonism between DLL1 and DLL3, or repression of Notch activity in mice or Drosophila. In vitro analyses show that differences in various domains of DLL1 and DLL3 individually contribute to their biochemical nonequivalence. In contrast to endogenous DLL1 located on the surface of presomitic mesoderm cells, we find endogenous DLL3 predominantly in the Golgi apparatus. Our data demonstrate distinct in vivo functions for DLL1 and DLL3. They suggest that DLL3 does not antagonize DLL1 in the presomitic mesoderm and warrant further analyses of potential physiological functions of DLL3 in the Golgi network.


Sign in / Sign up

Export Citation Format

Share Document