Nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing

Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 589-599 ◽  
Author(s):  
M. Ng ◽  
F.J. Diaz-Benjumea ◽  
S.M. Cohen

The nubbin gene is required for normal growth and patterning of the wing in Drosophila. We report here that nubbin encodes a member of the POU family of transcription factors. Regulatory mutants which selectively remove nubbin expression from wing imaginal discs lead to loss of wing structures. Although nubbin is expressed throughout the wing primordium, analysis of genetic mosaics suggests a localized requirement for nubbin activity in the wing hinge. These observations suggest the existence of a novel proximal-distal growth control center in the wing hinge, which is required in addition to the well characterized anterior-posterior and dorsal-ventral compartment boundary organizing centers.

Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3467-3476 ◽  
Author(s):  
J.F. de Celis ◽  
M. Ruiz-Gomez

Drosophila imaginal discs are divided into units called compartments. Cells belonging to the same compartment are related by lineage and express a characteristic set of ‘selector genes’. The borders between compartments act as organizing centres that influence cell growth within compartments. Thus, in the cells immediately anterior to the anterior-posterior compartment boundary the presence of the hedgehog product causes expression of decapentaplegic, which, in turn, influences the growth and patterning of the wing disc. The normal growth of the disc requires that posterior-specific genes, such as hedgehog and engrailed are not expressed in cells of the anterior compartment. Here we show that hedgehog can activate engrailed in the anterior compartment and that both hedgehog and engrailed are specifically repressed in anterior cells by the activity of the neurogenic gene groucho. In groucho mutant discs, hedgehog and engrailed are expressed at the dorsoventral boundary of the anterior compartment, leading to the ectopic activation of decapentaplegic and patched and to a localised increase in cell growth associated with pattern duplications. The presence of engrailed in the anterior compartment causes the transformation of anterior into posterior structures.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1203-1212 ◽  
Author(s):  
Katerina Nestoras ◽  
Helena Lee ◽  
Jym Mohler

We have undertaken a genetic analysis of new strong alleles of knot (kn). The original kn1 mutation causes an alteration of wing patterning similar to that associated with mutations of fused (fu), an apparent fusion of veins 3 and 4 in the wing. However, unlike fu, strong kn mutations do not affect embryonic segmentation and indicate that kn is not a component of a general Hh (Hedgehog)-signaling pathway. Instead we find that kn has a specific role in those cells of the wing imaginal disc that are subject to ptc-mediated Hh-signaling. Our results suggest a model for patterning the medial portion of the Drosophila wing, whereby the separation of veins 3 and 4 is maintained by kn activation in the intervening region in response to Hh-signaling across the adjacent anterior-posterior compartment boundary.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4215-4225 ◽  
Author(s):  
F.J. Diaz-Benjumea ◽  
S.M. Cohen

Growth and patterning of the Drosophila wing is controlled by organizing centers located at the anterior-posterior and dorsal-ventral compartment boundaries. Interaction between cells in adjacent compartments establish the organizer. We report here that Serrate and Notch mediate the interaction between dorsal and ventral cells to direct localized expression of Wingless at the D/V boundary. Serrate serves as a spatially localized ligand which directs Wg expression through activation of Notch. Ligand independent activation of Notch is sufficient to direct Wg expression, which in turn mediates the organizing activity of the D/V boundary.


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


2015 ◽  
Vol 26 (25) ◽  
pp. 4700-4717 ◽  
Author(s):  
Anup Parchure ◽  
Neha Vyas ◽  
Charles Ferguson ◽  
Robert G. Parton ◽  
Satyajit Mayor

Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4053-4063 ◽  
Author(s):  
S.S. Blair ◽  
A. Ralston

It is thought that the posterior expression of the ‘selector’ genes engrailed and invected control the subdivision of the growing wing imaginal disc of Drosophila into anterior and posterior lineage compartments. At present, the cellular mechanisms by which separate lineage compartments are maintained are not known. Most models have assumed that the presence or absence of selector gene expression autonomously drives the expression of compartment-specific adhesion or recognition molecules that inhibit intermixing between compartments. However, our present understanding of Hedgehog signalling from posterior to anterior cells raises some interesting alternative models based on a cell's response to signalling. We show here that anterior cells that lack smoothened, and thus the ability to receive the Hedgehog signal, no longer obey a lineage restriction in the normal position of the anterior-posterior boundary. Rather these clones extend into anatomically posterior territory, without any changes in engrailed/invected gene expression. We have also examined clones lacking both en and inv; these too show complex behaviors near the normal site of the compartment boundary, and do not always cross entirely into anatomically anterior territory. Our results suggest that compartmentalization is a complex process involving intercompartmental signalling; models based on changes in affinity or growth will be discussed.


Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1591-1599 ◽  
Author(s):  
M.C. Gibson ◽  
G. Schubiger

Surgically fragmented Drosophila appendage primordia (imaginal discs) engage in wound healing and pattern regulation during short periods of in vivo culture. Prothoracic leg disc fragments possess exceptional regulative capacity, highlighted by the ability of anterior cells to convert to posterior identity and establish a novel posterior compartment. This anterior/posterior conversion violates developmental lineage restrictions essential for normal growth and patterning of the disc, and thus provides an ideal model for understanding how cells change fate during epimorphic pattern regulation. Here we present evidence that the secreted signal encoded by hedgehog directs anterior/posterior conversion by activating the posterior-specific transcription factor engrailed in regulating anterior cells. In the absence of hedgehog activity, prothoracic leg disc fragments fail to undergo anterior/posterior conversion, but can still regenerate missing anterior pattern elements. We suggest that hedgehog-independent regeneration within the anterior compartment (termed integration) is mediated by the positional cues encoded by wingless and decapentaplegic. Taken together, our results provide a novel mechanistic interpretation of imaginal disc pattern regulation and permit speculation that similar mechanisms could govern appendage regeneration in other organisms.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1369-1376 ◽  
Author(s):  
Myriam Zecca ◽  
Gary Struhl

The subdivision of the Drosophila wing imaginal disc into dorsoventral (DV) compartments and limb-body wall (wing-notum) primordia depends on Epidermal Growth Factor Receptor (EGFR) signaling, which heritably activates apterous (ap) in D compartment cells and maintains Iroquois Complex (Iro-C) gene expression in prospective notum cells. We examine the source, identity and mode of action of the EGFR ligand(s) that specify these subdivisions. Of the three known ligands for the Drosophila EGFR, only Vein (Vn), but not Spitz or Gurken, is required for wing disc development. We show that Vn activity is required specifically in the dorsoproximal region of the wing disc for ap and Iro-C gene expression. However, ectopic expression of Vn in other locations does not reorganize ap or Iro-C gene expression. Hence, Vn appears to play a permissive rather than an instructive role in organizing the DV and wing-notum segregations, implying the existance of other localized factors that control where Vn-EGFR signaling is effective. After ap is heritably activated, the level of EGFR activity declines in D compartment cells as they proliferate and move ventrally, away from the source of the instructive ligand. We present evidence that this reduction is necessary for D and V compartment cells to interact along the compartment boundary to induce signals, like Wingless (Wg), which organize the subsequent growth and differentiation of the wing primordium.


2020 ◽  
Vol 12 (3) ◽  
pp. e1478 ◽  
Author(s):  
Jia Gou ◽  
Jay A. Stotsky ◽  
Hans G. Othmer

Sign in / Sign up

Export Citation Format

Share Document