scholarly journals Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo

2007 ◽  
Vol 178 (3) ◽  
pp. 465-476 ◽  
Author(s):  
Insa Geffers ◽  
Katrin Serth ◽  
Gavin Chapman ◽  
Robert Jaekel ◽  
Karin Schuster-Gossler ◽  
...  

The Notch ligands Dll1 and Dll3 are coexpressed in the presomitic mesoderm of mouse embryos. Despite their coexpression, mutations in Dll1 and Dll3 cause strikingly different defects. To determine if there is any functional equivalence, we replaced Dll1 with Dll3 in mice. Dll3 does not compensate for Dll1; DLL1 activates Notch in Drosophila wing discs, but DLL3 does not. We do not observe evidence for antagonism between DLL1 and DLL3, or repression of Notch activity in mice or Drosophila. In vitro analyses show that differences in various domains of DLL1 and DLL3 individually contribute to their biochemical nonequivalence. In contrast to endogenous DLL1 located on the surface of presomitic mesoderm cells, we find endogenous DLL3 predominantly in the Golgi apparatus. Our data demonstrate distinct in vivo functions for DLL1 and DLL3. They suggest that DLL3 does not antagonize DLL1 in the presomitic mesoderm and warrant further analyses of potential physiological functions of DLL3 in the Golgi network.

2001 ◽  
Vol 357 (3) ◽  
pp. 699-708 ◽  
Author(s):  
Francisco RAMOS-MORALES ◽  
Carmen VIME ◽  
Michel BORNENS ◽  
Concepción FEDRIANI ◽  
Rosa M. RIOS

GMAP-210 (Golgi-microtubule-associated protein of 210kDa) is a peripheral Golgi protein that interacts with the minus end of microtubules through its C-terminus and with cis-Golgi network membranes through its N-terminus; it participates in the maintenance of the structural integrity of the Golgi apparatus [Infante, Ramos-Morales, Fedriani, Bornens and Rios (1999) J. Cell Biol. 145, 83–98]. We report here the cloning of a new isoform of GMAP-210 that lacks amino acid residues 105–196. On the basis of the analysis of the gmap-210 genomic sequence, we propose that the small isoform, GMAP-200, arises from alternative splicing of exon 4 of the primary transcript. Overexpression of GMAP-200 induces perturbations in both the Golgi apparatus and the microtubule network that are similar to those previously reported for GMAP-210 overexpression. We show that both isoforms are able to oligomerize under overexpression conditions. Analysis in vitro and in vivo, with the green fluorescent protein as a marker, reveals that the binding of the N-terminal domain of GMAP-200 to the cis-Golgi network membranes is lower than that of the N-terminal domain of GMAP-210. Implications for the regulation of interaction between the cis-Golgi network and microtubules are discussed.


2006 ◽  
Vol 173 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Malika Ahras ◽  
Grant P. Otto ◽  
Sharon A. Tooze

In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 319-328
Author(s):  
F. Giorgi ◽  
P. Lucchesi ◽  
A. Morelli ◽  
M. Bownes

Drosophila ovarian follicles were examined ultrastructurally to study the vesicular traffic in the cortical ooplasm. The endocytic pathway leading to the production of yolk spheres was visualized following in vivo or in vitro exposure to peroxidase. The Golgi apparatus and the yolk spheres of wild-type ovarian follicles were preferentially labelled by fixation with osmium zinc iodide (OZI). Labelling of wild-type ovarian follicles was compared to that of several mutant follicles--L186/Basc, fs(2)A17 and ap4--which are defective in vitellogenesis. In these mutants, the Golgi apparatus and the vesicles nearby were either scantly labelled or not labelled at all. In oocytes from flies homozygous for the gene fs(1)1163, the Golgi apparatus was labelled as in the controls, but no yolk spheres appeared to be labelled with OZI at any of the developmental stages. In several Drosophila strains, the pattern of OZI label in the cortical ooplasm was seen to vary in relation to the number of yp structural genes. In starved Drosophila females, OZI labelling of the cortical ooplasm appeared restricted to the Golgi apparatus and to an extended tubular network. A similar labelling pattern was also detected in in vitro cultured vitellogenic follicles. Refeeding, topical application of juvenile hormone analogue to starved females or hormone addition to the culture medium, all caused the yolk spheres to become labelled with OZI and to incorporate peroxidase. These observations prove that impairing endocytic uptake by either mutation or lack of juvenile hormone prevents fusion of coated vesicles and tubules with the yolk spheres and leads them instead to form an intermediate cell compartment with Golgi-derived vesicles.


Development ◽  
1988 ◽  
Vol 103 (2) ◽  
pp. 379-390 ◽  
Author(s):  
P.P. Tam

Orthotopic grafts of wheat germ agglutinin-colloidal gold conjugate (WGA-gold) labelled cells were used to demonstrate differences in the segmental fate of cells in the presomitic mesoderm of the early-somite-stage mouse embryos developing in vitro. Labelled cells in the anterior region of the presomitic mesoderm colonized the first three somites formed after grafting, while those grafted to the middle region of this tissue were found mostly in the 4th-7th newly formed somites. Labelled cells grafted to the posterior region were incorporated into somites whose somitomeres were not yet present in the presomitic mesoderm at the time of grafting. There was therefore an apparent posterior displacement of the grafted cells in the presomitic mesoderm. Colonization of somites by WGA-gold labelled cells was usually limited to two to three consecutive somites in the chimaera. The distribution of cells derived from a single graft to two somites was most likely due to the segregation of the labelled population when cells were allocated to adjacent meristic units during somite formation. Further spreading of the labelled cells to several somites in some cases was probably the result of a more extensive mixing of mesodermal cells among the somitomeres prior to somite segmentation.


Development ◽  
1985 ◽  
Vol 88 (1) ◽  
pp. 209-217
Author(s):  
Janet L. Wiebold ◽  
Gary B. Anderson

2- to 4-cell and morula- to blastocyst-stage mouse embryos were cultured for 1 h in tritiated leucine at two specific activities and their subsequent development followed in vitro and in vivo (after transfer to recipients), respectively. 2- to 4-cell embryos that incorporated an average of 42 d.p.m. per embryo were impaired in their ability to develop to the morula and blastocyst stage. Recipients receiving morulae and blastocysts that had incorporated an average of 384 d.p.m. per embryo failed to produce young. Reduction of the specific activity improved the viability of embryos both in vitro and in vivo but development was still less than that of unlabelled embryos. Protein degradation curves were different for both 2- to 4-cell and morulato blastocyst-stage embryos labelled at the two different specific activities. Most studies using tritiated amino acids have employed higher specific activities than those used here and they may have to be reevaluated due to the possibility of radiation-induced artifacts.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1259-1268 ◽  
Author(s):  
A. Meng ◽  
B. Moore ◽  
H. Tang ◽  
B. Yuan ◽  
S. Lin

The Drosophila doublesex (dsx) gene encodes a transcription factor that mediates sex determination. We describe the characterization of a novel zebrafish zinc-finger gene, terra, which contains a DNA binding domain similar to that of the Drosophila dsx gene. However, unlike dsx, terra is transiently expressed in the presomitic mesoderm and newly formed somites. Expression of terra in presomitic mesoderm is restricted to cells that lack expression of MyoD. In vivo, terra expression is reduced by hedgehog but enhanced by BMP signals. Overexpression of terra induces rapid apoptosis both in vitro and in vivo, suggesting that a tight regulation of terra expression is required during embryogenesis. Terra has both human and mouse homologs and is specifically expressed in mouse somites. Taken together, our findings suggest that terra is a highly conserved protein that plays specific roles in early somitogenesis of vertebrates.


Development ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 151-167
Author(s):  
A. J. Copp ◽  
M. J. Seller ◽  
P. E. Polani

A dye-injection technique has been used to determine the developmental stage at which posterior neuropore (PNP) closure occurs in normal and mutant curly tail mouse embryos. In vivo, the majority of non-mutant embryos undergo PNP closure between 30 and 34 somites whereas approximately 50% of all mutant embryos show delayed closure, and around 20% maintain an open PNP even at advanced stages of development. A similar result has been found for embryos developing in vitro from the headfold stage. Later in development, 50–60% of mutant embryos in vivo develop tail flexion defects, and 15–20% lumbosacral myeloschisis. This supports the view that delayed PNP closure is the main developmental lesion leading to the appearance of caudal neural tube defects in curly tail mice. The neural tube is closed in the region of tail flexion defects, but it is locally overexpanded and abnormal in position. The significance of these observations is discussed in relation to possible mechanisms of development of lumbosacral and caudal neural tube defects. This paper constitutes the first demonstration of the development of a genetically induced malformation in vitro.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 211-225
Author(s):  
E. Lehtonen ◽  
R. A. Badley

The immunofluorescence technique was used to detect the presence and distribution of actin, alpha-actinin, tubulin and 10 nm filament protein in early mouse embryos. Actin and alpha-actinin stainings showed a distinct concentration to a peripheral layer in the cleavage-stage blastomeres and in trophectoderm cells. Dots of fluorescence appeared in this cortical staining pattern. The distribution of tubulin staining in the blastomere cytoplasm was relatively even with apparent concentration at the perinuclear region and frequently at wide intercellular contact areas. 10 nm filament protein was distributed evenly in the blastomere cytoplasm without cortical concentration of the label. At the blastocyst stage, the trophectoderm cells in blastocyst outgrowths in vitro developed well organized cytoskeletons including both microfilament, microtubule and 10 nm filament elements. Comparable structures were not observed in blastocysts in vivo, or in late hatched blastocysts cultured in suspension. The morphogenetic significance of the observations is discussed.


2006 ◽  
Vol 17 (1) ◽  
pp. 56-66 ◽  
Author(s):  
John H. Evans ◽  
Diana Murray ◽  
Christina C. Leslie ◽  
Joseph J. Falke

The C2 domain of protein kinase Cα (PKCα) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCα and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCα Ca2+-binding loops (CBLs) and PIP2 binding site (β-strands 3–4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCα C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on β-strands 3–4, which bind to plasma membrane PIP2.


Sign in / Sign up

Export Citation Format

Share Document