High-speed data acquisition of the cooling curves and evaluation of heat transfer coefficient in quenching process

Measurement ◽  
2008 ◽  
Vol 41 (6) ◽  
pp. 676-686 ◽  
Author(s):  
Huiping Li ◽  
Guoqun Zhao ◽  
Lianfang He ◽  
Yue Mu
2012 ◽  
Vol 229-231 ◽  
pp. 1543-1546
Author(s):  
Xiao Bo Zhou ◽  
Min Xia ◽  
Hai Long Cheng

To improve data transmission performance of the data acquisition card, a design of high-speed data transmission system is proposed in the thesis. Using FPGA of programmable logic devices, adopting Verilog HDL of hardware description language, the design of modularization and DMA transmission method is implemented in FPGA. Eventually the design implements the data transmission with high-speed through PCI Express interface. Through simulation and verification based on hardware system, this design is proved to be feasible and can satisfy the performance requirements of data transmission in the high-speed data acquisition card applied in high-speed railway communication. The design also has some value of application and reference for a universal data acquisition card.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Flow boiling in microchannels offers many advantages such as high heat transfer coefficient, higher surface area to volume ratio, low coolant inventory, uniform temperature control and compact design. The application of these flow boiling systems has been severely limited due to early critical heat flux (CHF) and flow instability. Recently, a number of studies have focused on variable flow cross-sectional area to augment the thermal performance of microchannels. In a previous work, the open microchannel with manifold (OMM) configuration was experimentally investigated to provide high heat transfer coefficient coupled with high CHF and low pressure drop. In the current work, high speed images of plain surface using tapered manifold are obtained to gain an insight into the nucleating bubble behavior. The mechanism of bubble nucleation, growth and departure are described through high speed images. Formation of dry spots for both tapered and uniform manifold geometry is also discussed.


2000 ◽  
Author(s):  
G. Hetsroni ◽  
M. Gurevich ◽  
A. Mosyak ◽  
R. Rozenblit ◽  
L. P. Yarin

Abstract During subcooled boiling of pure water and water with cationic surfactants, the motion of bubbles and the temperature of the heated surface were recorded by both a high-speed video camera and an infrared radiometer. The results show that the bubble behavior and the heat transfer mechanism for the surfactant are quite different from those of clear water. Bubbles formed in Habon G solutions were much smaller man those in water and the surface was covered with them faster. Boiling hysteresis is found for degraded solutions. Dependencies of heat transfer coefficient for various solutions were obtained and compared. The boiling curves of surfactant are quite different from the boiling curve of pure water. Experimental results demonstrate that the heat transfer coefficient of the boiling process can be enhanced considerably by the addition of a small amount of Habon G. The experiments show that the limitations of the ER technique with respect to frequency response are outweighed by its unique capacity to measure wall temperature distribution with high spatial resolution over an area encompassing many nucleation sites and over long periods.


2012 ◽  
Vol 455-456 ◽  
pp. 217-221
Author(s):  
Zhi Gang Liu ◽  
Qi Xiao Sun

A solution of intelligent test system for mechanical property of geotextile material which based on high speed data acquisition card PCI-1714 is introduced in this paper. Microprocessor and drive card PCI-1240 are also used to control and drive the test equipment. The article discussed in detail the system’s overall design, the hardware structure, software design, and process of data acquisition. Software is designed by Visual Basic 6.0. This paper research and implement on accurate measurement of mechanics performance of geotextile material.


Sign in / Sign up

Export Citation Format

Share Document