A novel FPGA-based system for real-time calculation of the Spectral Kurtosis: A prospective application to harmonic detection

Measurement ◽  
2016 ◽  
Vol 86 ◽  
pp. 101-113 ◽  
Author(s):  
Ángel Quirós-Olozábal ◽  
Juan-José González-de-la-Rosa ◽  
María-Ángeles Cifredo-Chacón ◽  
José-María Sierra-Fernández
Author(s):  
Yongjian Sun ◽  
Bo Xu

In this paper, in order to solve the calculation problem of creep damage of steam turbine rotor, a real-time calculation method based on finite element model is proposed. The temperature field and stress field of the turbine rotor are calculated using finite element analysis software. The temperature data and stress data of the crucial positions are extracted. The data of temperature, pressure, rotational speed, and stress relating to creep damage calculation are normalized. A real-time creep stress calculation model is established by multiple regression method. After that, the relation between stress and damage function is analyzed and fitted, and creep damage is calculated in real-time. A creep damage real-time calculation system is constructed for practical turbine engineering. Finally, a numerical simulation experiment is designed and carried out to verify the effectiveness of this novel approach. Contributions of present work are that a practical solution for real-time creep damage prediction of steam turbine is supplied. It relates the real-time creep damage prediction to process parameters of steam turbine, and it bridges the gap between the theoretical research works and practical engineering.


2021 ◽  
Author(s):  
Vadim Goryachikh ◽  
Fahad Alghamdi ◽  
Abdulrahman Takrouni

Abstract Background information Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy absorbed by expansion to compress residue gas. Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration. For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2×50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes. Also, typical compressor performance monitoring systems does not have enough dynamic parameters that may indicate machine process process performance deterioration proactively (real-time calculation of actual polytrophic efficiency, absorbed power etc.) and help operator to take action before catastrophic failure occurs. In addition, typical compressor monitoring systems are based on assumed composition and fixed compressibility factor and do not reflect actual compositions variations that may affect machine performance monitoring. To overcome issues highlighted above, Hawiyah NGL (HNGL) team has developed computerized monitoring and advisory system to monitor the performance of turbo-expander-brake compressor, proactively, identify potentially unsafe conditions or performance deterioration and advice operators on taking necessary actions to avoid unscheduled deferment of production. Computerized performance monitoring system has been implemented in HNGL DCS (Yokogawa) and utilized by control room operators on day-to-day basis. Real-time calculation, analysis and outputs produced by performance monitoring system allow operator to understand how current operating condition are far from danger zone. Proactive deviation alarms and guide messages produce by the system in case of deviation help operators to control machine from entering unsafe region. Actual polytrophic efficiency, adsorbed power calculations provide machine condition status and allow identifying long-term performance deterioration trends.


2014 ◽  
Vol 61 (2) ◽  
pp. 270-285 ◽  
Author(s):  
Michael Kleer ◽  
Andrey Gizatullin ◽  
Klaus Dreßler ◽  
Steffen Müller

Abstract The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.


2020 ◽  
Vol 35 (1) ◽  
pp. 977-987 ◽  
Author(s):  
Junpeng Ma ◽  
Xiongfei Wang ◽  
Frede Blaabjerg ◽  
Wensheng Song ◽  
Shunliang Wang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2409 ◽  
Author(s):  
Weinan Ye ◽  
Ming Zhang ◽  
Yu Zhu ◽  
Leijie Wang ◽  
Jinchun Hu ◽  
...  

Grating interferometry is an environmentally stable displacement measurement technique that has significant potential for identifying the position of the wafer stage. A fast and precise algorithm is required for real-time calculation of six degrees-of-freedom (DOF) displacement using phase shifts of interference signals. Based on affine transformation, we analyze diffraction spot displacement and changes in the internal and external effective optical paths of the grating interferometer caused by the displacement of the wafer stage (DOWS); then, we establish a phase shift-DOWS model. To solve the DOWS in real time, we present a polynomial approximation algorithm that uses the frequency domain characteristics of nonlinearities to achieve model reduction. The presented algorithm is verified by experiment and ZEMAX simulation.


2019 ◽  
Vol 15 (3) ◽  
pp. 264-271 ◽  
Author(s):  
David Felix ◽  
Ian Colwill ◽  
Elias Stipidis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document