Frequency-shift multiscale noise tuning stochastic resonance method for fault diagnosis of generator bearing in wind turbine

Measurement ◽  
2019 ◽  
Vol 133 ◽  
pp. 421-432 ◽  
Author(s):  
Jimeng Li ◽  
Ming Li ◽  
Jinfeng Zhang ◽  
Guoqian Jiang
Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 965 ◽  
Author(s):  
Lu Lu ◽  
Yu Yuan ◽  
Heng Wang ◽  
Xing Zhao ◽  
Jianjie Zheng

Vibration signals are used to diagnosis faults of the rolling bearing which is symmetric structure. Stochastic resonance (SR) has been widely applied in weak signal feature extraction in recent years. It can utilize noise and enhance weak signals. However, the traditional SR method has poor performance, and it is difficult to determine parameters of SR. Therefore, a new second-order tristable SR method (STSR) based on a new potential combining the classical bistable potential with Woods-Saxon potential is proposed in this paper. Firstly, the envelope signal of rolling bearings is the input signal of STSR. Then, the output of signal-to-noise ratio (SNR) is used as the fitness function of the Seeker Optimization Algorithm (SOA) in order to optimize the parameters of SR. Finally, the optimal parameters are used to set the STSR system in order to enhance and extract weak signals of rolling bearings. Simulated and experimental signals are used to demonstrate the effectiveness of STSR. The diagnosis results show that the proposed STSR method can obtain higher output SNR and better filtering performance than the traditional SR methods. It provides a new idea for fault diagnosis of rotating machinery.


2019 ◽  
Vol 26 (7) ◽  
pp. 1910-1920 ◽  
Author(s):  
Jin-tian Yin ◽  
Yong-fang Xie ◽  
Zhi-wen Chen ◽  
Tao Peng ◽  
Chun-hua Yang

2020 ◽  
Vol 53 (5-6) ◽  
pp. 767-777
Author(s):  
Xueping Ren ◽  
Jian Kang ◽  
Zhixing Li ◽  
Jianguo Wang

The early fault signal of rolling bearings is very weak, and when analyzed under strong background noise, the traditional signal processing method is not ideal. To extract fault characteristic information more clearly, the second-order UCPSR method is applied to the early fault diagnosis of rolling bearings. The continuous potential function itself is a continuous sinusoidal function. The particle transition is smooth and the output is better. Because of its three parameters, the potential structure is more comprehensive and has more abundant characteristics. When the periodic signal, noise and potential function are the best match, the system exhibits better denoise compared to that of other methods. This paper discusses the influence of potential parameters on the motion state of particles between potential wells in combination with the potential parameter variation diagrams discussed. Then, the formula of output signal-to-noise ratio is derived to further study the relationships among potential parameters, and then the ant colony algorithm is used to optimize potential parameters in order to obtain the optimal output signal-to-noise ratio. Finally, an early weak fault diagnosis method for bearings based on the underdamped continuous potential stochastic resonance model is proposed. Through simulation and experimental verification, the underdamped continuous potential stochastic resonance results are compared with those of the time-delayed feedback stochastic resonance method, which proves the validity of the underdamped continuous potential stochastic resonance method.


Sign in / Sign up

Export Citation Format

Share Document