A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis

2013 ◽  
Vol 60 ◽  
pp. 7-19 ◽  
Author(s):  
Jimeng Li ◽  
Xuefeng Chen ◽  
Zhaohui Du ◽  
Zuowei Fang ◽  
Zhengjia He
Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 965 ◽  
Author(s):  
Lu Lu ◽  
Yu Yuan ◽  
Heng Wang ◽  
Xing Zhao ◽  
Jianjie Zheng

Vibration signals are used to diagnosis faults of the rolling bearing which is symmetric structure. Stochastic resonance (SR) has been widely applied in weak signal feature extraction in recent years. It can utilize noise and enhance weak signals. However, the traditional SR method has poor performance, and it is difficult to determine parameters of SR. Therefore, a new second-order tristable SR method (STSR) based on a new potential combining the classical bistable potential with Woods-Saxon potential is proposed in this paper. Firstly, the envelope signal of rolling bearings is the input signal of STSR. Then, the output of signal-to-noise ratio (SNR) is used as the fitness function of the Seeker Optimization Algorithm (SOA) in order to optimize the parameters of SR. Finally, the optimal parameters are used to set the STSR system in order to enhance and extract weak signals of rolling bearings. Simulated and experimental signals are used to demonstrate the effectiveness of STSR. The diagnosis results show that the proposed STSR method can obtain higher output SNR and better filtering performance than the traditional SR methods. It provides a new idea for fault diagnosis of rotating machinery.


2019 ◽  
Vol 26 (7) ◽  
pp. 1910-1920 ◽  
Author(s):  
Jin-tian Yin ◽  
Yong-fang Xie ◽  
Zhi-wen Chen ◽  
Tao Peng ◽  
Chun-hua Yang

2021 ◽  
Vol 11 (23) ◽  
pp. 11480
Author(s):  
Hongjiang Cui ◽  
Ying Guan ◽  
Wu Deng

Aiming at the problems of poor decomposition quality and the extraction effect of a weak signal with strong noise by empirical mode decomposition (EMD), a novel fault diagnosis method based on cascaded adaptive second-order tristable stochastic resonance (CASTSR) and EMD is proposed in this paper. In the proposed method, low-frequency interference components are filtered by using high-pass filtering, and the restriction conditions of stochastic resonance theory are solved by using an ordinary variable-scale method. Then, a chaotic ant colony optimization algorithm with a global optimization ability is employed to adaptively adjust the parameters of the second-order tristable stochastic resonance system to obtain the optimal stochastic resonance, and noise reduction pretreatment technology based on CASTSR is developed to enhance the weak signal characteristics of low frequency. Next, the EMD is employed to decompose the denoising signal and extract the characteristic frequency from the intrinsic mode function (IMF), so as to realize the fault diagnosis of rolling bearings. Finally, the numerical simulation signal and actual bearing fault data are selected to prove the validity of the proposed method. The experiment results indicate that the proposed fault diagnosis method can enhance the decomposition quality of the EMD, effectively extract features of weak signals, and improve the accuracy of fault diagnosis. Therefore, the proposed fault diagnosis method is an effective fault diagnosis method for rotating machinery.


2020 ◽  
Vol 53 (5-6) ◽  
pp. 767-777
Author(s):  
Xueping Ren ◽  
Jian Kang ◽  
Zhixing Li ◽  
Jianguo Wang

The early fault signal of rolling bearings is very weak, and when analyzed under strong background noise, the traditional signal processing method is not ideal. To extract fault characteristic information more clearly, the second-order UCPSR method is applied to the early fault diagnosis of rolling bearings. The continuous potential function itself is a continuous sinusoidal function. The particle transition is smooth and the output is better. Because of its three parameters, the potential structure is more comprehensive and has more abundant characteristics. When the periodic signal, noise and potential function are the best match, the system exhibits better denoise compared to that of other methods. This paper discusses the influence of potential parameters on the motion state of particles between potential wells in combination with the potential parameter variation diagrams discussed. Then, the formula of output signal-to-noise ratio is derived to further study the relationships among potential parameters, and then the ant colony algorithm is used to optimize potential parameters in order to obtain the optimal output signal-to-noise ratio. Finally, an early weak fault diagnosis method for bearings based on the underdamped continuous potential stochastic resonance model is proposed. Through simulation and experimental verification, the underdamped continuous potential stochastic resonance results are compared with those of the time-delayed feedback stochastic resonance method, which proves the validity of the underdamped continuous potential stochastic resonance method.


Sign in / Sign up

Export Citation Format

Share Document