An improved reconstruction method based on auto-adjustable step size sparsity adaptive matching pursuit and adaptive modular dictionary update for acoustic emission signals of rails

Measurement ◽  
2021 ◽  
pp. 110650
Author(s):  
Shuzhi Song ◽  
Xin Zhang ◽  
Qiushi Hao ◽  
Yan Wang ◽  
Naizhang Feng ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 1435
Author(s):  
Xue Bi ◽  
Lu Leng ◽  
Cheonshik Kim ◽  
Xinwen Liu ◽  
Yajun Du ◽  
...  

Image reconstruction based on sparse constraints is an important research topic in compressed sensing. Sparsity adaptive matching pursuit (SAMP) is a greedy pursuit reconstruction algorithm, which reconstructs signals without prior information of the sparsity level and potentially presents better reconstruction performance than other greedy pursuit algorithms. However, SAMP still suffers from being sensitive to the step size selection at high sub-sampling ratios. To solve this problem, this paper proposes a constrained backtracking matching pursuit (CBMP) algorithm for image reconstruction. The composite strategy, including two kinds of constraints, effectively controls the increment of the estimated sparsity level at different stages and accurately estimates the true support set of images. Based on the relationship analysis between the signal and measurement, an energy criterion is also proposed as a constraint. At the same time, the four-to-one rule is improved as an extra constraint. Comprehensive experimental results demonstrate that the proposed CBMP yields better performance and further stability than other greedy pursuit algorithms for image reconstruction.


2021 ◽  
Vol 11 (11) ◽  
pp. 4816
Author(s):  
Haoqiang Liu ◽  
Hongbo Zhao ◽  
Wenquan Feng

Recent years have witnessed that real-time health monitoring for vehicles is gaining importance. Conventional monitoring scheme faces formidable challenges imposed by the massive signals generated with extremely heavy burden on storage and transmission. To address issues of signal sampling and transmission, compressed sensing (CS) has served as a promising solution in vehicle health monitoring, which performs signal sampling and compression simultaneously. Signal reconstruction is regarded as the most critical part of CS, while greedy reconstruction has been a research hotspot. However, the existing approaches either require prior knowledge of the sparse signal or perform with expensive computational complexity. To exploit the structure of the sparse signal, in this paper, we introduce an initial estimation approach for signal sparsity level firstly. Then, a novel greedy reconstruction algorithm that relies on no prior information of sparsity level while maintaining a good reconstruction performance is presented. The proposed algorithm integrates strategies of regularization and variable adaptive step size and further performs filtration. To verify the efficiency of the algorithm, typical voltage disturbance signals generated by the vehicle power system are taken as trial data. Preliminary simulation results demonstrate that the proposed algorithm achieves superior performance compared to the existing methods.


2018 ◽  
Vol 11 (02) ◽  
pp. 1750014 ◽  
Author(s):  
Jingjing Yu ◽  
Qiyue Li ◽  
Haiyu Wang

Bioluminescence tomography (BLT) is an important noninvasive optical molecular imaging modality in preclinical research. To improve the image quality, reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem. The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm. In this paper, we present a reconstruction method based on L[Formula: see text] regularization to enhance sparsity of BLT solution and solve the nonconvex L[Formula: see text] norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights. To assess the performance of the proposed reconstruction algorithm, simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms, including the weighted interior-point, L1 homotopy, and the Stagewise Orthogonal Matching Pursuit algorithm. Simulation results show that the proposed method yield stable reconstruction results under different noise levels. Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy, multiple-source resolving and image quality.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5330
Author(s):  
Xiao ◽  
Hu ◽  
Shao ◽  
Li

Biometric systems allow recognition and verification of an individual through his or her physiological or behavioral characteristics. It is a growing field of research due to the increasing demand for secure and trustworthy authentication systems. Compressed sensing is a data compression acquisition method that has been proposed in recent years. The sampling and compression of data is completed synchronously, avoiding waste of resources and meeting the requirements of small size and limited power consumption of wearable portable devices. In this work, a compression reconstruction method based on compression sensing was studied using bioelectric signals, which aimed to increase the limited resources of portable remote bioelectric signal recognition equipment. Using electrocardiograms (ECGs) and photoplethysmograms (PPGs) of heart signals as research data, an improved segmented weak orthogonal matching pursuit (OMP) algorithm was developed to compress and reconstruct the signals. Finally, feature values were extracted from the reconstructed signals for identification and analysis. The accuracy of the proposed method and the practicability of compression sensing in cardiac signal identification were verified. Experiments showed that the reconstructed ECG and PPG signal recognition rates were 95.65% and 91.31%, respectively, and that the residual value was less than 0.05 mV, which indicates that the proposed method can be effectively used for two bioelectric signal compression reconstructions.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Wanqing Song ◽  
Shen Deng ◽  
Jianguo Yang ◽  
Qiang Cheng

The cutting sound in the audible range includes plenty of tool wear information. The sound is sampled by the acoustic emission (AE) sensor as a short-time sequence, then worn wear can be detected by the Duffing-Holmes oscillator. A novel engineering method is proposed for determining the chaotic threshold of the Duffing-Holmes oscillator. First, a rough threshold value is calculated by local Lyapunov exponents with a step size 0.1. Second, the exact threshold value is calculated by the Duffing-Holmes system in terms of the law of the golden section. The advantage of the method is low computation cost. The feasibility for tool condition detection is demonstrated by the 27 kinds of cutting conditions with sharp tool and worn tool in turning experiments. The 54 group data sampled as noisy are embedded into the Duffing-Holmes oscillator, respectively. Finally, one chaotic threshold is determined conveniently which can distinguish between worn tool or sharp tool.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuzhu Xiao ◽  
Guoli Dong ◽  
Xueli Song

It is challenging to reconstruct a nonlinear dynamical system when sufficient observations are not available. Recent study shows this problem can be solved by paradigm of compressive sensing. In this paper, we study the reconstruction of chaotic systems based on the stochastic gradient matching pursuit (StoGradMP) method. Comparing with the previous method based on convex optimization, the study results show that the StoGradMP method performs much better when the numerical sampling period is small. So the present study enables potential application of the reconstruction method using limited observations in some special situations where limited observations can be acquired in limited time.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Yijiu Zhao ◽  
Xiaoyan Zhuang ◽  
Zhijian Dai ◽  
Houjun Wang

This paper suggests an upside-down tree-based orthogonal matching pursuit (UDT-OMP) compressive sampling signal reconstruction method in wavelet domain. An upside-down tree for the wavelet coefficients of signal is constructed, and an improved version of orthogonal matching pursuit is presented. The proposed algorithm reconstructs compressive sampling signal by exploiting the upside-down tree structure of the wavelet coefficients of signal besides its sparsity in wavelet basis. Compared with conventional greedy pursuit algorithms: orthogonal matching pursuit (OMP) and tree-based orthogonal matching pursuit (TOMP), signal-to-noise ratio (SNR) using UDT-OMP is significantly improved.


Sign in / Sign up

Export Citation Format

Share Document