Effects of variation in porcine MYOD1 gene on muscle fiber characteristics, lean meat production, and meat quality traits

Meat Science ◽  
2012 ◽  
Vol 92 (1) ◽  
pp. 36-43 ◽  
Author(s):  
E.A. Lee ◽  
J.M. Kim ◽  
K.S. Lim ◽  
Y.C. Ryu ◽  
W.M. Jeon ◽  
...  
2020 ◽  
Vol 60 (5) ◽  
pp. 725
Author(s):  
R. J. Anaruma ◽  
L. G. Reis ◽  
P. E. de Felício ◽  
S. B. Pflanzer ◽  
S. Rossi ◽  
...  

Castration in beef cattle production has been proposed to reduce sexual and aggressive behaviour, increase carcass fat deposition, and improve meat quality traits, such as tenderness and juiciness. The aim of the present study was to evaluate the effects of the age of castration on performance, subprimal yield and meat quality of Nellore cattle raised on a pasture system. A total of 24 Nellore males were raised in a grass-fed system with Brachiaria brizantha since birth until slaughter (at 30 months old). Three treatments were assigned: castration at weaning (CW); castration at 20 months old (C20); and intact bulls (NoC). Males were weighed, and muscle and fat thickness were periodically evaluated by ultrasonography. The cold carcass weight, dressing and carcass pH (pH 24), and subprimal cut weights were recorded after 24 h of chilling. Samples of Longissimus lumborum (LL) were taken to measure meat quality traits. Animals that were castrated at weaning had lower bodyweight after 10 months of age with no changes in the supplement intakes, average daily gain, hot carcass weight and cold carcass weight compared with NoC. Intact males had greater cooking losses and carcass yield compared with others, with no differences for LL pH 24 according to the treatments. The castration did not change the LL muscle area, but decreased total forequarter, chunk, shoulder and eye of round weights, and increased the back fat over LL and rump fat. Animals castrated at weaning had higher marbling compared with others. In addition, regardless of age, castration improved tenderness, increased LL total lipids and decreased moisture compared with NoC. For sensory property, steers castrated at 20 months of age had lower juiciness, and NoC had a greater global sensory property compared with steers castrated at 20 months old. In conclusion, steers castrated at weaning had lower growth rate, final bodyweight and meat production compared with intact males. However, when castration was performed at 20 months, animals did not differ in most cases from castration at weaning and NoC. Tenderness was improved by castration, but sensory traits did not differ between groups.


2018 ◽  
Vol 27 (4) ◽  
Author(s):  
Terhi Iso-Touru ◽  
Maiju Pesonen ◽  
Daniel Fischer ◽  
Arto Huuskonen ◽  
Anu Sironen

High meat quality and specifically meat tenderness are desired traits by the consumers, however the environmental impact of meat production is becoming a relevant factor in the industry. Therefore, breeding of dual purpose cattle breeds may answer the high demand of meat production in the future. In this study we identified statistical differences between genotypes of CAST and CAPN1 gene variants with meat quality traits in a dairy breed (Nordic Red Cattle) and compared the results with beef breed (Aberdeen Angus). Our results show that the favorable alleles have not been selected in the studied dairy breed and thus could be used as a tool for improvement of meat quality. The genes were associated with specific meat quality traits (i.e. sensory juiciness, marbling score and meat color) also in the dairy breed. This supports the utility of known meat quality associated genetic variants to improve meat quality in dairy breeds.


2017 ◽  
Vol 52 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Adriane Molardi Bainy ◽  
Rodrigo Pelicioni Savegnago ◽  
Luara Afonso de Freitas ◽  
Beatriz do Nascimento Nunes ◽  
Jaqueline Oliveira Rosa ◽  
...  

Abstract: The objective of this work was to estimate genetic parameters for bird carcass and meat quality traits, as well as to explore the genetic patterns of the breeding values of this population using cluster analyses. Data from 1,846 birds were used to estimate the genetic parameters of production and quality traits using the multiple-trait animal model, and cluster analyses were performed. The heritability estimates ranged from 0.08± 0.03 for meat pH measured 24 hours after slaughter to 0.85± 0.09 for body weight. The genetic correlations between production traits were high and positive. The genetic correlations between meat quality traits were low and were not informative due to the high standard errors (same magnitudes as those of the genetic correlations). The genetic correlations between meat production and quality traits were negative, except between production traits and meat lightness intensity. Based on breeding values (EBVs), the evaluated population can be divided into four groups through cluster analyses, and one group is suitable for selection because the birds presented EBVs above and around the average of the population, respectively, for production and quality traits. Therefore, it is possible to obtain genetic gains for production-related traits without decreasing meat quality.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 883
Author(s):  
Rongyang Li ◽  
Bojiang Li ◽  
Aiwen Jiang ◽  
Yan Cao ◽  
Liming Hou ◽  
...  

The alteration in skeletal muscle fiber is a critical factor affecting livestock meat quality traits and human metabolic diseases. Long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs with a length of more than 200 nucleotides. However, the mechanisms underlying the regulation of lncRNAs in skeletal muscle fibers remain elusive. To understand the genetic basis of lncRNA-regulated skeletal muscle fiber development, we performed a transcriptome analysis to identify the key lncRNAs affecting skeletal muscle fiber and meat quality traits on a pig model. We generated the lncRNA expression profiles of fast-twitch Biceps femoris (Bf) and slow-twitch Soleus (Sol) muscles and identified the differentially expressed (DE) lncRNAs using RNA-seq and performed bioinformatics analyses. This allowed us to identify 4581 lncRNA genes among six RNA libraries and 92 DE lncRNAs between Bf and Sol which are the key candidates for the conversion of skeletal muscle fiber types. Moreover, we detected the expression patterns of lncRNA MSTRG.42019 in different tissues and skeletal muscles of various development stages. In addition, we performed a correlation analyses between the expression of DE lncRNA MSTRG.42019 and meat quality traits. Notably, we found that DE lncRNA MSTRG.42019 was highly expressed in skeletal muscle and its expression was significantly higher in Sol than in Bf, with a positive correlation with the expression of Myosin heavy chain 7 (MYH7) (r = 0.6597, p = 0.0016) and a negative correlation with meat quality traits glycolytic potential (r = −0.5447, p = 0.0130), as well as drip loss (r = −0.5085, p = 0.0221). Moreover, we constructed the lncRNA MSTRG.42019–mRNAs regulatory network for a better understanding of a possible mechanism regulating skeletal muscle fiber formation. Our data provide the groundwork for studying the lncRNA regulatory mechanisms of skeletal muscle fiber conversion, and given the importance of skeletal muscle fiber types in muscle-related diseases, our data may provide insight into the treatment of muscular diseases in humans.


Sign in / Sign up

Export Citation Format

Share Document