Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation

2007 ◽  
Vol 42 (10) ◽  
pp. 1326-1351 ◽  
Author(s):  
Jèrôme Bruyère ◽  
Jean-Yves Dantan ◽  
Régis Bigot ◽  
Patrick Martin
2012 ◽  
Vol 44 (2) ◽  
pp. 132-142 ◽  
Author(s):  
Ahmed Jawad Qureshi ◽  
Jean-Yves Dantan ◽  
Vahid Sabri ◽  
Paul Beaucaire ◽  
Nicolas Gayton

Author(s):  
Chang-Hsin Kuo ◽  
Jhy-Cherng Tsai

The tolerance analysis of an assembly is an important issue for mechanical design. Among many tolerance analysis methods, the conventional statistical tolerance analysis method is the most popular one. However, the conventional statistical tolerance analysis method is based on the normal distribution. It fails to predict the resultant tolerance of an assembly with features in non-normal distributions. In this paper, the distributions of features are transferred into statistical moments first. Then, the tolerance stack-up can be handled based on these moments. Finally, the computed resultant moments can be mapped back to probability distribution to find the resultant tolerance specification of the assembly. Two examples are used to demonstrate the proposed method. Compared to the resultants by Monte Carlo simulation with 1,000,000 samples, the predicted resultant tolerance specifications by this method are only −0.868% and 0.799% differences. The predicted resultant tolerances of this method are fast and accurate.


2012 ◽  
Vol 433-440 ◽  
pp. 6616-6621
Author(s):  
Yong Jun Jiang

This paper deals with the mathematical formulation of tolerance analysis. The mathematical formulation presented simulates the influences of geometrical deviations on the geometrical behavior of the mechanism, and integrates the quantifier notion. We propose a mathematical formulation of tolerance analysis which simulates the influences of geometrical deviations on the geometrical behavior of the mechanism, and integrates the quantifier notion. To compute this mathematical formulation, two approaches based on Quantified Constraint Satisfaction Problem solvers and Monte Carlo simulation are proposed and tested.


2020 ◽  
pp. 1-22
Author(s):  
Tanmay D. Mathur ◽  
Edward C. Smith ◽  
Robert C. Bill

Abstract A comprehensive numerical loaded tooth contact analysis (LTCA) model is proposed for straight bevel gears that exhibit large number of teeth in contact, well beyond involute line of action limits. This kind of contact is observed when the meshing gears have conformal surfaces, as in a Pericyclic mechanical transmission, and is traditionally analysed using finite element simulations. The Pericyclic drive is kinematically similar to an epicyclic bevel gear train, and is characterized by load sharing over large number of teeth in an internal-external bevel gear mesh, large shaft angles (175° - 178°), nutational gear motion, and high reduction ratio. The contact region spreads over a large area on the gear tooth flank due to high contacting surface conformity. Thus, a thick plate Finite Strip method (FSM) was utilized to accurately calculate the gear tooth bending deflection. Based on tooth deformation calculation model, and accounting for initial surface separation, a variational framework is developed to simultaneously solve for load distribution and gear tooth deformation. This is followed by calculation of contact stress, bending stress, mesh stiffness, and transmission error. The results demonstrate the high power density capabilities of the Pericyclic drive and potential for gear noise reduction. The model developed herein is applied with real gear tooth surfaces, as well.


Author(s):  
Zongde Fang ◽  
Hongbin Yang ◽  
Yanwei Zhou ◽  
Xiaozhong Deng

Abstract A new approach for optimizing the dynamic behavior of spiral bevel gear drives has been developed. The local synthesis, tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA) techniques were used to constitute the design process with feedback, by which a contact ratio being near 2.0 or 3.0 would be achieved. An improved dynamic behavior of the spiral bevel gear drives under certain operating load or a wide range of load could be obtained.


2012 ◽  
Vol 13 (1) ◽  
pp. 690-696
Author(s):  
Zhifeng Liu ◽  
Zhimin Zhang ◽  
Ligang Cai ◽  
Wentong Yang ◽  
Chunhua Guo

2010 ◽  
Vol 44-47 ◽  
pp. 3711-3715
Author(s):  
Rui Liang Zhang ◽  
Tie Wang ◽  
Hong Mei Li

Tooth contact analysis is an effective tool for meshing analysis of the double circular arc profile spiral bevel gear (DCAPSBG), as well as the basis for loading tooth contact analysis and finite element analysis. Applying the principle of tooth contact analysis (TCA) and the tooth profile characteristic of the DCAPSBG, this paper introduced and discussed the key contents and method of TCA computer programming for numerical simulation analysis of the transmission meshing quality of DCAPSBG. The TCA program developed in this paper, which had been verified by real examples, provided an effective approach for the design of DCAPSBG.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
M. Kolivand ◽  
H. Ligata ◽  
G. Steyer ◽  
D. K. Benedict ◽  
J. Chen

Theoretically, spherical involutes are used as one of the base topographies for straight bevel gears. Actual bevel gears, however, have deviations from their intended topographies due to manufacturing errors, heat treatment deviations, and finishing processes. Measuring the physical parts with coordinate measuring machines (CMMs), this study proposes a new approach to capture such deviations. The measured deviations from spherical involute are expressed in form of a third-order two-dimensional (2D) polynomial function and added to the base topography to duplicate the geometry of the actual part; tooth thickness deviation is also accounted for and corrected through changing the theoretical tooth thickness. The resultant surfaces are then used to construct ease-off and surface of roll angle topographies and to perform tooth contact analysis (TCA) and calculate motion transmission error (TE). At the end a sample straight bevel gear set is measured and utilizing the proposed approach its predicted TCA is compared to the experimental TCA obtained from roll tester. The results show very good correlation between the predicted and actual TCA of the parts. Utilizing the proposed methodology, the other bevel gear base profile geometries (such as octoids) can also be analyzed. In the proposed approach, the difference between other base geometries and spherical involutes can be treated as deviations from spherical involutes and can be taken into account to perform TCA.


Sign in / Sign up

Export Citation Format

Share Document