A computerized approach for loaded tooth contact analysis of planetary gear drives considering relevant deformations

2018 ◽  
Vol 122 ◽  
pp. 252-278 ◽  
Author(s):  
Shyi-Jeng Tsai ◽  
Siang-Yu Ye
Author(s):  
Siang-Yu Ye ◽  
Shyi-Jeng Tsai

The power-split gear mechanisms is widely applied in power transmission because of the advantages of compact design, lighter weight and high power density. The load sharing and the load distribution are the important performance issues while designing the power split mechanisms. The paper propose a computerized approach based on the influence coefficient method for loaded tooth contact analysis of such the gear transmission. Not only the load sharing of the multiple contact tooth pairs and the loaded transmission errors, but also the distributed contact stresses and the corresponding contact patterns on all the engaged tooth flanks can be calculated by using the proposed LTCA approach. Some analysis results are also discussed with a study case of the first planetary stage of a compound cycloid planetary gear drive.


Author(s):  
Yan-zhong Wang ◽  
Can-hui Wu ◽  
Kang Gong ◽  
Shu Wang ◽  
Xing-fu Zhao ◽  
...  

In order to analyze the transmission performance of face-gear in real working condition, a calculational approach for load equivalent error of alignment has been investigated with the purpose of analyzing the support system and tooth deformation of face-gear drives. Then, the equations of contact path of loaded tooth contact analysis have been established based on load equivalent error of alignment. For the purpose of analyzing the bearing contact, the curvatures of face-gear and pinion have been presented. Tooth contact deformation and bending deformation have been developed using elasticity and three-dimensional FEA. Loaded tooth contact analysis and contact stress have been considered to simulate the contact and meshing of the gear tooth surfaces and to calculate the evolution of load distribution, bearing contact, transmission errors, and contact stresses of the gear drive along the cycle of meshing. The performed research proves that the proposed loaded tooth contact analysis method can effectively solve the meshing characteristic problem of face-gear drives system. The results are illustrated with numerical examples.


2000 ◽  
Vol 122 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Claude Gosselin ◽  
Thierry Guertin ◽  
Didier Remond ◽  
Yves Jean

The Transmission Error and Bearing Pattern of a gear set are fundamental aspects of its meshing behavior. To assess the validity of gear simulation models, the Transmission Error and Bearing Pattern of a Formate Hypoid gear set are measured under a variety of operating positions and applied loads. Measurement data are compared to simulation results of Tooth Contact Analysis and Loaded Tooth Contact Analysis models, and show excellent agreement for the considered test gear set. [S1050-0472(00)00901-6]


Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


Sign in / Sign up

Export Citation Format

Share Document