Derivation of tooth stiffness of asymmetric gears for loaded tooth contact analysis

Author(s):  
B. Mahr ◽  
A. Pogacnik ◽  
A. Langheinrich
2000 ◽  
Vol 122 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Claude Gosselin ◽  
Thierry Guertin ◽  
Didier Remond ◽  
Yves Jean

The Transmission Error and Bearing Pattern of a gear set are fundamental aspects of its meshing behavior. To assess the validity of gear simulation models, the Transmission Error and Bearing Pattern of a Formate Hypoid gear set are measured under a variety of operating positions and applied loads. Measurement data are compared to simulation results of Tooth Contact Analysis and Loaded Tooth Contact Analysis models, and show excellent agreement for the considered test gear set. [S1050-0472(00)00901-6]


Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


Author(s):  
Siang-Yu Ye ◽  
Shyi-Jeng Tsai

The power-split gear mechanisms is widely applied in power transmission because of the advantages of compact design, lighter weight and high power density. The load sharing and the load distribution are the important performance issues while designing the power split mechanisms. The paper propose a computerized approach based on the influence coefficient method for loaded tooth contact analysis of such the gear transmission. Not only the load sharing of the multiple contact tooth pairs and the loaded transmission errors, but also the distributed contact stresses and the corresponding contact patterns on all the engaged tooth flanks can be calculated by using the proposed LTCA approach. Some analysis results are also discussed with a study case of the first planetary stage of a compound cycloid planetary gear drive.


Author(s):  
Li-Chi Chao ◽  
Chung-Biau Tsay

The spherical gear is a new type of gear proposed by Mitome et al. [1]. Different from that of the conventional spur or helical gear sets, the spherical gear set can allow variable shaft angles and large axial misalignments without gear interference during the gear drive meshing [1, 2]. Geometrically, the spherical gear has two types of gear tooth profiles, the concave tooth and convex tooth. In practical transmission applications, the contact situation of a spherical gear set is very complex. To obtain a more realistic simulation result, the loaded tooth contact analysis (LTCA) has been performed by employing the finite element method (FEM). According to the derived mathematical model of spherical gear tooth surfaces, an automatic meshes generation program for three-dimensional spherical gears has been developed. Beside, tooth contact analysis (TCA) of spherical gears has been performed to simulate the contact points of the spherical gear set. Furthermore, the contact stress contours of spherical gear tooth surfaces and bending stress of tooth roots have been investigated by giving the design parameters, material properties, loadings and boundary conditions of spherical gears.


Author(s):  
Vilmos V. Simon

The method for loaded tooth contact analysis is applied for the investigation of the influence of misalignments and tooth errors on load distribution, stresses and transmission errors in mismatched spiral bevel gears. By using the corresponding computer program the influence of pinion’s offset and axial adjustment error, angular position error of the pinion axis and tooth spacing error on tooth contact pressure, tooth root stresses and angular displacement of the driven gear member from the theoretically exact position based on the ratio of the numbers of teeth is investigated. The obtained results have shown that in general, the misalignments in spiral bevel gears worsen the conjugation of contacting tooth surfaces and in extreme cases cause edge contact with high tooth contact pressures. But, some mismatches, as are the axial movement of the pinion apex towards the gear teeth or the tip relief of pinion teeth (in this analysis it is represented by the tooth spacing error) reduce the maximum tooth contact pressure. Also it can be concluded that the misalignments and the tooth spacing errors significantly increase the angular position error of the driven gear from the theoretically exact position based on the numbers of teeth and make the motion graphs unbalanced.


2013 ◽  
Vol 372 ◽  
pp. 543-546
Author(s):  
Xiao Fang Yang ◽  
Zong De Fang ◽  
Yong Zhen Zhang ◽  
Yuan Fei Han

According to the principle of tri-branching, a mechanism structural model was developed to analyze the helical gear transmission system. On the base of loaded tooth contact analysis (LTCA), the load transmission error of each gear stage is simulated at the any engagement position, and the fitting curves of the torsion mesh stiffness are obtained, which can improve the numerical precision. The research results can be applied to analyze the actual application of tri-branching transmission system and provide a firm foundation for study the power-split and load-sharing characteristics.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Dong ◽  
Yan Cao ◽  
Zhou Fang

In order to solve the dynamic vibration characteristics of the power-split transmission system, the system of the dynamic mechanical model is established. Firstly, according to the theoretical analysis method of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pair is simulated, and the time-varying mesh stiffness excitation is obtained, which can improve the numerical precision. Next, by using the lumped mass method, the bending-torsional coupling three-dimensional dynamical model of the power-split transmission is established. The identical dimensionless equations are deduced by eliminating the effect of rigid displacement and the method of dimensional normalization. Next, the frequency domain and time domain responses of this system are obtained. The dynamic load change characteristics of each gear pair are analyzed. The results show that establishment, solution, and analysis of the system dynamics model could provide a basis for the dynamic design and have an important significance for the dynamic efficiency analysis and dynamic performance optimization design of the power-split transmission. Through theoretical data compared with the experimental data, we verified the correctness of the method proposed.


Sign in / Sign up

Export Citation Format

Share Document