Loaded tooth contact analysis of orthogonal face-gear drives

Author(s):  
Yan-zhong Wang ◽  
Can-hui Wu ◽  
Kang Gong ◽  
Shu Wang ◽  
Xing-fu Zhao ◽  
...  

In order to analyze the transmission performance of face-gear in real working condition, a calculational approach for load equivalent error of alignment has been investigated with the purpose of analyzing the support system and tooth deformation of face-gear drives. Then, the equations of contact path of loaded tooth contact analysis have been established based on load equivalent error of alignment. For the purpose of analyzing the bearing contact, the curvatures of face-gear and pinion have been presented. Tooth contact deformation and bending deformation have been developed using elasticity and three-dimensional FEA. Loaded tooth contact analysis and contact stress have been considered to simulate the contact and meshing of the gear tooth surfaces and to calculate the evolution of load distribution, bearing contact, transmission errors, and contact stresses of the gear drive along the cycle of meshing. The performed research proves that the proposed loaded tooth contact analysis method can effectively solve the meshing characteristic problem of face-gear drives system. The results are illustrated with numerical examples.

Author(s):  
Li-Chi Chao ◽  
Chung-Biau Tsay

The spherical gear is a new type of gear proposed by Mitome et al. [1]. Different from that of the conventional spur or helical gear sets, the spherical gear set can allow variable shaft angles and large axial misalignments without gear interference during the gear drive meshing [1, 2]. Geometrically, the spherical gear has two types of gear tooth profiles, the concave tooth and convex tooth. In practical transmission applications, the contact situation of a spherical gear set is very complex. To obtain a more realistic simulation result, the loaded tooth contact analysis (LTCA) has been performed by employing the finite element method (FEM). According to the derived mathematical model of spherical gear tooth surfaces, an automatic meshes generation program for three-dimensional spherical gears has been developed. Beside, tooth contact analysis (TCA) of spherical gears has been performed to simulate the contact points of the spherical gear set. Furthermore, the contact stress contours of spherical gear tooth surfaces and bending stress of tooth roots have been investigated by giving the design parameters, material properties, loadings and boundary conditions of spherical gears.


2010 ◽  
Vol 29-32 ◽  
pp. 1711-1716
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

A double direction modification with a grinding worm is applied on tooth surface of face gear drive. The surface equations of the rack cutter, shaper and grinding worm are derived respectively. Loaded tooth contact analysis (LTCA) with finite element method (FEM) is performed to investigate the meshing performance of face gear drive before modification and after modification. The modification by a grinding worm can obviously reduce the sensitivity of face gear drive to misalignment; the bending stress and the contact stress are reduced with avoiding edge contact; the load transmission error is reduced. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper, and the modification magnitude can be controlled freely. The investigation is illustrated with numerical examples.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
M. Kolivand ◽  
A. Kahraman

Actual hypoid gear tooth surfaces do deviate from the theoretical ones either globally due to manufacturing errors or locally due to reasons such as tooth surface wear. A practical methodology based on ease-off topography is proposed here for loaded tooth contact analysis of hypoid gears having both local and global deviations. This methodology defines the theoretical pinion and gear tooth surfaces from the machine settings and cutter parameters, and constructs the surfaces of the theoretical ease-off and roll angle to compute for the unloaded contact analysis. This theoretical ease-off topography is modified based on tooth surface deviations and is used to perform a loaded tooth contact analysis according to a semi-analytical method proposed earlier. At the end, two examples, a face-milled hypoid gear set having local deviations and a face-hobbed one having global deviations, are analyzed to demonstrate the effectiveness of the proposed methodology in quantifying the effect of such deviations on the load distribution and the loaded motion transmission error.


2010 ◽  
Vol 139-141 ◽  
pp. 1154-1157 ◽  
Author(s):  
Hui Guo ◽  
Ning Zhao ◽  
Hao Gao

This paper proposes a modification method for tooth surface of face gear drive with a grinding worm on a numerical grinding machine. The surface equation of grinding worm is derived, and the coordinate System of generating the worm is established. Tooth contact analysis (TCA) is performed to investigate the performance of face gear drive before and after modification, and the alignment error is considered. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper. The longitudinal bearing contact on the face-gear tooth surface has been obtained which will increase the contact ratio. By modification the edge contact at surface edges of the gears can be avoided and the modification magnitude can be controlled freely.


2020 ◽  
pp. 1-22
Author(s):  
Tanmay D. Mathur ◽  
Edward C. Smith ◽  
Robert C. Bill

Abstract A comprehensive numerical loaded tooth contact analysis (LTCA) model is proposed for straight bevel gears that exhibit large number of teeth in contact, well beyond involute line of action limits. This kind of contact is observed when the meshing gears have conformal surfaces, as in a Pericyclic mechanical transmission, and is traditionally analysed using finite element simulations. The Pericyclic drive is kinematically similar to an epicyclic bevel gear train, and is characterized by load sharing over large number of teeth in an internal-external bevel gear mesh, large shaft angles (175° - 178°), nutational gear motion, and high reduction ratio. The contact region spreads over a large area on the gear tooth flank due to high contacting surface conformity. Thus, a thick plate Finite Strip method (FSM) was utilized to accurately calculate the gear tooth bending deflection. Based on tooth deformation calculation model, and accounting for initial surface separation, a variational framework is developed to simultaneously solve for load distribution and gear tooth deformation. This is followed by calculation of contact stress, bending stress, mesh stiffness, and transmission error. The results demonstrate the high power density capabilities of the Pericyclic drive and potential for gear noise reduction. The model developed herein is applied with real gear tooth surfaces, as well.


Author(s):  
Chao Lin ◽  
Yu Wang ◽  
Yanan Hu ◽  
Yongquan Yu

A new type of compound transmission gear pair was put forward, called eccentric curve-face gear pair with curvilinear-shaped teeth. It could realize reciprocating motion of the gear shaft when the intersecting shafts achieve transferring motion and power through its unique tooth profile. The compound transmission principle of this gear pair was fully established based on the profile-closure process of axial direction and meshing process of the end face. The tooth surfaces of the eccentric curve-face gear and non-circular gear were generated. The contact paths of different teeth were obtained, and the compound transmission principle of eccentric curve-face gear pair with curvilinear-shaped teeth was verified by tooth contact analysis. By analyzing the mechanical characteristics of time-varying contact points, the changing rule of contact force was studied, and the compound transmission principle of the gear pair was further revealed from mechanics. Moreover, the experimental platform for transmission of eccentric curve-face gear pair with curvilinear-shaped teeth was set up to measure the motion law and contact area, and the correctness of the analysis results was verified.


Author(s):  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes ◽  
Faydor L. Litvin ◽  
Kenichi Hayasaka ◽  
Kenji Yukishima

Involute helical gears with modified geometry for transformation of rotation between parallel axes are considered. Three types of topology of geometry are considered: (1) crowning of pinion tooth surface is provided only partially by application of a grinding disk; (2) double crowning of pinion tooth surface is obtained applying a grinding disk; (3) concave-convex pinion and gear tooth surfaces are provided (similar to Novikov-Wildhaber gears). Localization of bearing contact is provided for all three types of topology. Computerized TCA (Tooth Contact Analysis) is performed for all three types of topology to obtain: (i) path of contact on pinion and gear tooth surfaces; (ii) negative function of transmission errors for misaligned gear drives (that allows the contact ratio to be increased). Stress analysis is performed for the whole cycle of meshing. Finite element models of pinion and gear with several pairs of teeth are applied. A relative motion is imposed to the pinion model that allows friction between contact surfaces to be considered. Numerical examples have confirmed the advantages and disadvantages of the applied approaches for generation and design.


Sign in / Sign up

Export Citation Format

Share Document